You are looking at the documentation of a prior release. To read the documentation of the latest release, please
visit here.
New to KubeDB? Please start here.
Storage Autoscaling of Elasticsearch Topology Cluster
This guide will show you how to use KubeDB
to autoscale the storage of an Elasticsearch topology cluster.
Before You Begin
At first, you need to have a Kubernetes cluster, and the
kubectl
command-line tool must be configured to communicate with your cluster.Install
KubeDB
Community, Enterprise and Autoscaler operator in your cluster following the steps here.Install Prometheus from here
You must have a
StorageClass
that supports volume expansion.You should be familiar with the following
KubeDB
concepts:
To keep everything isolated, we are going to use a separate namespace called demo
throughout this tutorial.
$ kubectl create ns demo
namespace/demo created
Note: YAML files used in this tutorial are stored in this directory of kubedb/docs repository.
Storage Autoscaling of Topology Cluster
At first verify that your cluster has a storage class, that supports volume expansion. Let’s check,
$ kubectl get storageclass
NAME PROVISIONER RECLAIMPOLICY VOLUMEBINDINGMODE ALLOWVOLUMEEXPANSION AGE
standard (default) rancher.io/local-path Delete WaitForFirstConsumer false 9h
topolvm-provisioner topolvm.cybozu.com Delete WaitForFirstConsumer true 9h
We can see from the output the topolvm-provisioner
storage class has ALLOWVOLUMEEXPANSION
field as true. So, this storage class supports volume expansion. We can use it. You can install topolvm from here
Now, we are going to deploy a Elasticsearch
topology cluster using a supported version by the KubeDB
operator. Then we are going to apply ElasticsearchAutoscaler
to set up autoscaling.
Deploy Elasticsearch Topology
In this section, we are going to deploy a Elasticsearch topology cluster with version searchguard-7.9.3
. Then, in the next section we will set up autoscaling for this database using ElasticsearchAutoscaler
CRD. Below is the YAML of the Elasticsearch
CR that we are going to create,
apiVersion: kubedb.com/v1alpha2
kind: Elasticsearch
metadata:
name: es-topology
namespace: demo
spec:
enableSSL: true
version: searchguard-7.9.3
storageType: Durable
topology:
master:
suffix: master
replicas: 1
storage:
storageClassName: "standard"
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi
data:
suffix: data
replicas: 2
storage:
storageClassName: "standard"
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi
ingest:
suffix: ingest
replicas: 1
storage:
storageClassName: "standard"
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi
terminationPolicy: WipeOut
Let’s create the Elasticsearch
CRO we have shown above,
$ kubectl create -f https://github.com/kubedb/docs/raw/v2023.10.9/docs/guides/elasticsearch/autoscaler/storage/topology/yamls/es-topology.yaml
elasticsearch.kubedb.com/es-topology created
Now, wait until es-topology
has status Ready
. i.e,
$ kubectl get elasticsearch -n demo -w
NAME VERSION STATUS AGE
es-topology searchguard-7.9.3 Provisioning 12s
es-topology searchguard-7.9.3 Ready 1m50s
Let’s check volume size from the data statefulset, and from the persistent volume,
$ kubectl get sts -n demo es-topology-data -o json | jq '.spec.volumeClaimTemplates[].spec.resources'
{
"requests": {
"storage": "1Gi"
}
}
$ kubectl get pv -n demo
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
pvc-1a22f743-2b03-487b-92db-e75ce14a3994 1Gi RWO Delete Bound demo/data-es-topology-ingest-0 topolvm-provisioner 2m8s
pvc-82c60733-22a3-4dbb-bac0-2fcd386650dd 1Gi RWO Delete Bound demo/data-es-topology-data-0 topolvm-provisioner 2m7s
pvc-a610cbb8-dece-4d2e-8870-b66a2f1fe458 1Gi RWO Delete Bound demo/data-es-topology-master-0 topolvm-provisioner 2m8s
pvc-edb7f4f7-f8ba-4af9-a507-b707462ddc3c 1Gi RWO Delete Bound demo/data-es-topology-data-1 topolvm-provisioner 119s
You can see that the data StatefulSet has 1GB storage, and the capacity of all the persistent volume is also 1GB.
We are now ready to apply the ElasticsearchAutoscaler
CRO to set up storage autoscaling for the data nodes.
Storage Autoscaling
Here, we are going to set up storage autoscaling using an ElasticsearchAutoscaler Object.
Create ElasticsearchAutoscaler Object
To set up vertical autoscaling for this topology cluster, we have to create a ElasticsearchAutoscaler
CRO with our desired configuration. Below is the YAML of the ElasticsearchAutoscaler
object that we are going to create,
apiVersion: autoscaling.kubedb.com/v1alpha1
kind: ElasticsearchAutoscaler
metadata:
name: es-topology-storage-as
namespace: demo
spec:
databaseRef:
name: es-topology
storage:
topology:
data:
trigger: "On"
usageThreshold: 60
scalingThreshold: 50
Here,
spec.databaseRef.name
specifies that we are performing vertical scaling operation ones-topology
cluster.spec.storage.topology.data.trigger
specifies that storage autoscaling is enabled for data nodes.spec.storage.topology.data.usageThreshold
specifies storage usage threshold, if storage usage exceeds60%
then storage autoscaling will be triggered.spec.storage.topology.data.scalingThreshold
specifies the scaling threshold. Storage will be scaled to50%
of the current amount.
Note: In this demo we are only setting up the storage autoscaling for the data nodes, that’s why we only specified the data section of the autoscaler. You can enable autoscaling for master nodes and ingest nodes in the same YAML, by specifying the
topology.master
andtopology.ingest
respectivly.
Let’s create the ElasticsearchAutoscaler
CR we have shown above,
$ kubectl apply -f https://github.com/kubedb/docs/raw/v2023.10.9/docs/guides/elasticsearch/autoscaler/storage/topology/yamls/es-topology-storage-as.yaml
elasticsearchautoscaler.autoscaling.kubedb.com/es-topology-storage-as created
Storage Autoscaling is set up successfully
Let’s check that the elasticsearchautoscaler
resource is created successfully,
$ kubectl get elasticsearchautoscaler -n demo
NAME AGE
es-topology-storage-as 4m16s
$ kubectl describe elasticsearchautoscaler -n demo es-topology-storage-as
Name: es-topology-storage-as
Namespace: demo
Labels: <none>
Annotations: <none>
API Version: autoscaling.kubedb.com/v1alpha1
Kind: ElasticsearchAutoscaler
Metadata:
Creation Timestamp: 2021-03-22T15:47:18Z
Generation: 1
Resource Version: 19096
UID: 3ea0516f-e272-463e-be7f-903c86a8e084
Spec:
Database Ref:
Name: es-topology
Storage:
Topology:
Data:
Scaling Threshold: 50
Trigger: On
Usage Threshold: 60
Events: <none>
So, the elasticsearchautoscaler
resource is created successfully.
Now, for this demo, we are going to manually fill up one of the persistent volume to exceed the usageThreshold
using dd
command to see if storage autoscaling is working or not.
Let’s exec into the data nodes and fill the database volume using the following commands:
$ kubectl exec -it -n demo es-topology-data-0 -- bash
[root@es-topology-data-0 elasticsearch]# df -h /usr/share/elasticsearch/data
Filesystem Size Used Avail Use% Mounted on
/dev/topolvm/fb6d30c8-8bf7-4c19-884e-937f150f4763 1014M 40M 975M 4% /usr/share/elasticsearch/data
[root@es-topology-data-0 elasticsearch]# dd if=/dev/zero of=/usr/share/elasticsearch/data/file.img bs=650M count=1
1+0 records in
1+0 records out
681574400 bytes (682 MB) copied, 2.25556 s, 302 MB/s
[root@es-topology-data-0 elasticsearch]# df -h /usr/share/elasticsearch/data
Filesystem Size Used Avail Use% Mounted on
/dev/topolvm/fb6d30c8-8bf7-4c19-884e-937f150f4763 1014M 690M 325M 69% /usr/share/elasticsearch/data
So, from the above output we can see that the storage usage is 69%, which exceeded the usageThreshold
60%.
Let’s watch the elasticsearchopsrequest
in the demo namespace to see if any elasticsearchopsrequest
object is created. After some time you’ll see that an elasticsearchopsrequest
of type VolumeExpansion
will be created based on the scalingThreshold
.
$ kubectl get esops -n demo -w
NAME TYPE STATUS AGE
esops-es-topology-79zpaf VolumeExpansion 0s
esops-es-topology-79zpaf VolumeExpansion Progressing 0s
Let’s wait for the opsRequest to become successful.
$ kubectl get esops -n demo
NAME TYPE STATUS AGE
esops-es-topology-79zpaf VolumeExpansion Successful 110s
We can see from the above output that the ElasticsearchOpsRequest
has succeeded. If we describe the ElasticsearchOpsRequest
we will get an overview of the steps that were followed to expand the volume of the database.
$ kubectl describe elasticsearchopsrequest -n demo esops-es-topology-79zpaf
Name: esops-es-topology-79zpaf
Namespace: demo
Labels: app.kubernetes.io/component=database
app.kubernetes.io/instance=es-topology
app.kubernetes.io/managed-by=kubedb.com
app.kubernetes.io/name=elasticsearches.kubedb.com
Annotations: <none>
API Version: ops.kubedb.com/v1alpha1
Kind: ElasticsearchOpsRequest
Metadata:
Creation Timestamp: 2021-03-22T16:03:54Z
Generation: 1
Owner References:
API Version: autoscaling.kubedb.com/v1alpha1
Block Owner Deletion: true
Controller: true
Kind: ElasticsearchAutoscaler
Name: es-topology-storage-as
UID: aae135af-b203-47db-baeb-f51ffeb66e57
Resource Version: 23727
UID: 378b28e8-9a7f-49c2-9e4d-49ee6ecad4d0
Spec:
Database Ref:
Name: es-topology
Type: VolumeExpansion
Volume Expansion:
Topology:
Data: 1594884096
Status:
Conditions:
Last Transition Time: 2021-03-22T16:03:54Z
Message: Elasticsearch ops request is expanding volume of the Elasticsearch nodes.
Observed Generation: 1
Reason: VolumeExpansion
Status: True
Type: VolumeExpansion
Last Transition Time: 2021-03-22T16:05:24Z
Message: successfully expanded data nodes
Observed Generation: 1
Reason: UpdateDataNodePVCs
Status: True
Type: UpdateDataNodePVCs
Last Transition Time: 2021-03-22T16:05:39Z
Message: successfully deleted the statefulSets with orphan propagation policy
Observed Generation: 1
Reason: OrphanStatefulSetPods
Status: True
Type: OrphanStatefulSetPods
Last Transition Time: 2021-03-22T16:05:44Z
Message: StatefulSet is recreated
Observed Generation: 1
Reason: ReadyStatefulSets
Status: True
Type: ReadyStatefulSets
Last Transition Time: 2021-03-22T16:05:44Z
Message: Successfully completed the modification process.
Observed Generation: 1
Reason: Successful
Status: True
Type: Successful
Observed Generation: 1
Phase: Successful
Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Normal PauseDatabase 3m18s KubeDB Enterprise Operator Pausing Elasticsearch demo/es-topology
Normal UpdateDataNodePVCs 108s KubeDB Enterprise Operator successfully expanded data nodes
Normal OrphanStatefulSetPods 93s KubeDB Enterprise Operator successfully deleted the statefulSets with orphan propagation policy
Normal ResumeDatabase 93s KubeDB Enterprise Operator Resuming Elasticsearch demo/es-topology
Normal ResumeDatabase 93s KubeDB Enterprise Operator Resuming Elasticsearch demo/es-topology
Normal ReadyStatefulSets 88s KubeDB Enterprise Operator StatefulSet is recreated
Normal ResumeDatabase 88s KubeDB Enterprise Operator Resuming Elasticsearch demo/es-topology
Normal Successful 88s KubeDB Enterprise Operator Successfully Updated Database
Now, we are going to verify from the Statefulset
, and the Persistent Volume
whether the volume of the data nodes of the cluster has expanded to meet the desired state, Let’s check,
$ kubectl get sts -n demo es-topology-data -o json | jq '.spec.volumeClaimTemplates[].spec.resources'
{
"requests": {
"storage": "1594884096"
}
}
$ kubectl get pvc -n demo
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
data-es-topology-data-0 Bound pvc-82c60733-22a3-4dbb-bac0-2fcd386650dd 2Gi RWO topolvm-provisioner 11m
data-es-topology-data-1 Bound pvc-edb7f4f7-f8ba-4af9-a507-b707462ddc3c 2Gi RWO topolvm-provisioner 11m
data-es-topology-ingest-0 Bound pvc-1a22f743-2b03-487b-92db-e75ce14a3994 1Gi RWO topolvm-provisioner 11m
data-es-topology-master-0 Bound pvc-a610cbb8-dece-4d2e-8870-b66a2f1fe458 1Gi RWO topolvm-provisioner 11m
$ kubectl get pv -n demo
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
pvc-1a22f743-2b03-487b-92db-e75ce14a3994 1Gi RWO Delete Bound demo/data-es-topology-ingest-0 topolvm-provisioner 10m
pvc-82c60733-22a3-4dbb-bac0-2fcd386650dd 2Gi RWO Delete Bound demo/data-es-topology-data-0 topolvm-provisioner 10m
pvc-a610cbb8-dece-4d2e-8870-b66a2f1fe458 1Gi RWO Delete Bound demo/data-es-topology-master-0 topolvm-provisioner 10m
pvc-edb7f4f7-f8ba-4af9-a507-b707462ddc3c 2Gi RWO Delete Bound demo/data-es-topology-data-1 topolvm-provisioner 10m
The above output verifies that we have successfully autoscaled the volume of the data nodes of this Elasticsearch topology cluster.
Cleaning Up
To clean up the Kubernetes resources created by this tutorial, run:
$ kubectl delete elasticsearch -n demo es-topology
$ kubectl delete elasticsearchautoscaler -n demo es-topology-storage-as