Backup KubeDB managed MariaDB Cluster using Stash
Stash v0.11.8+
supports backup and restoration of MariaDB databases. This guide will show you how you can take a logical backup of your MariaDB database cluster and restore them using Stash.
Before You Begin
- At first, you need to have a Kubernetes cluster, and the
kubectl
command-line tool must be configured to communicate with your cluster. - Install KubeDB operator in your cluster from here.
- Install Stash in your cluster following the steps here.
- Install Stash
kubectl
plugin following the steps here. - If you are not familiar with how Stash backup and restore MariaDB databases, please check the following guide here.
You have to be familiar with following custom resources:
To keep things isolated, we are going to use a separate namespace called demo
throughout this tutorial. Create demo
namespace if you haven’t created it yet.
$ kubectl create ns demo
namespace/demo created
Prepare MariaDB
In this section, we are going to deploy a MariaDB database using KubeDB. Then, we are going to insert some sample data into it.
Deploy MariaDB using KubeDB
At first, let’s deploy a MariaDB database named sample-mariadb
of 3 replicas.
apiVersion: kubedb.com/v1
kind: MariaDB
metadata:
name: sample-mariadb
namespace: demo
spec:
version: "10.5.23"
replicas: 3
storageType: Durable
storage:
storageClassName: "standard"
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi
deletionPolicy: WipeOut
$ kubectl apply -f https://github.com/logical/docs/raw/v2024.11.18/docs/guides/mariadb/backup/logical/cluster/examples/sample-mariadb.yaml
mariadb.kubedb.com/sample-mariadb created
This MariaDB object will create the necessary PetSet, Secret, Service etc for the database. You can easily view all the resources created by MariaDB object using ketall kubectl
plugin as below,
$ kubectl get-all -n demo -l app.kubernetes.io/instance=sample-mariadb
NAME NAMESPACE AGE
endpoints/sample-mariadb demo 28m
endpoints/sample-mariadb-pods demo 28m
persistentvolumeclaim/data-sample-mariadb-0 demo 28m
pod/sample-mariadb-0 demo 28m
secret/sample-mariadb-auth demo 28m
serviceaccount/sample-mariadb demo 28m
service/sample-mariadb demo 28m
service/sample-mariadb-pods demo 28m
appbinding.appcatalog.appscode.com/sample-mariadb demo 28m
controllerrevision.apps/sample-mariadb-7b7f58b68f demo 28m
petset.apps/sample-mariadb demo 28m
poddisruptionbudget.policy/sample-mariadb demo 28m
rolebinding.rbac.authorization.k8s.io/sample-mariadb demo 28m
role.rbac.authorization.k8s.io/sample-mariadb demo 28m
Now, wait for 3 database pods to go into Running
state,
$ kubectl get pod -n demo -l app.kubernetes.io/instance=sample-mariadb
NAME READY STATUS RESTARTS AGE
sample-mariadb-0 1/1 Running 0 2m7s
sample-mariadb-1 1/1 Running 0 101s
sample-mariadb-2 1/1 Running 0 81s
Once the database pod is in Running
state, verify that all 3 nodes joined the cluster.
$ kubectl exec -it -n demo sample-mariadb-0 -- bash
root@sample-mariadb-0:/ mysql -u${MYSQL_ROOT_USERNAME} -p${MYSQL_ROOT_PASSWORD}
Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MariaDB connection id is 26
Server version: 10.5.23-MariaDB-1:10.5.23+maria~focal mariadb.org binary distribution
Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.
Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.
MariaDB [(none)]> show status like 'wsrep_cluster_size';
+--------------------+-------+
| Variable_name | Value |
+--------------------+-------+
| wsrep_cluster_size | 3 |
+--------------------+-------+
1 row in set (0.001 sec)
MariaDB [(none)]> quit;
Bye
From the above log, we can see that 3 nodes are ready to accept connections.
Insert Sample Data
Now, we are going to exec into the database pod and create some sample data. The sample-mariadb
object creates a secret containing the credentials of MariaDB and set them as pod’s Environment varibles MYSQL_ROOT_USERNAME
and MYSQL_ROOT_PASSWORD
.
Here, we are going to use the root user (MYSQL_ROOT_USERNAME
) credential MYSQL_ROOT_PASSWORD
to insert the sample data. Now, let’s exec into one of the pods and insert some sample data,
$ kubectl exec -it -n demo sample-mariadb-0 -- bash
root@sample-mariadb-0:/ mysql -u${MYSQL_ROOT_USERNAME} -p${MYSQL_ROOT_PASSWORD}
Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MariaDB connection id is 341
Server version: 10.5.23-MariaDB-1:10.5.23+maria~focal mariadb.org binary distribution
Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.
Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.
# Let's create a database named "company"
MariaDB [(none)]> create database company;
Query OK, 1 row affected (0.000 sec)
# Verify that the database has been created successfully
MariaDB [(none)]> show databases;
+--------------------+
| Database |
+--------------------+
| company |
| information_schema |
| mysql |
| performance_schema |
+--------------------+
4 rows in set (0.001 sec)
# Now, let's create a table called "employee" in the "company" table
MariaDB [(none)]> create table company.employees ( name varchar(50), salary int);
Query OK, 0 rows affected (0.018 sec)
# Verify that the table has been created successfully
MariaDB [(none)]> show tables in company;
+-------------------+
| Tables_in_company |
+-------------------+
| employees |
+-------------------+
1 row in set (0.007 sec)
# Now, let's insert a sample row in the table
MariaDB [(none)]> insert into company.employees values ('John Doe', 5000);
Query OK, 1 row affected (0.003 sec)
# Insert another sample row
MariaDB [(none)]> insert into company.employees values ('James William', 7000);
Query OK, 1 row affected (0.002 sec)
# Verify that the rows have been inserted into the table successfully
MariaDB [(none)]> select * from company.employees;
+---------------+--------+
| name | salary |
+---------------+--------+
| John Doe | 5000 |
| James William | 7000 |
+---------------+--------+
2 rows in set (0.001 sec)
MariaDB [(none)]> exit
Bye
We have successfully deployed a MariaDB database and inserted some sample data into it. In the subsequent sections, we are going to backup these data using Stash.
Prepare for Backup
In this section, we are going to prepare the necessary resources (i.e. database connection information, backend information, etc.) before backup.
Verify Stash MariaDB Addon Installed
When you install the Stash, it automatically installs all the official database addons. Verify that it has installed the MariaDB addons using the following command.
$ kubectl get tasks.stash.appscode.com | grep mariadb
mariadb-backup-10.5.23 35s
mariadb-restore-10.5.23 35s
Ensure AppBinding
Stash needs to know how to connect with the database. An AppBinding
exactly provides this information. It holds the Service and Secret information of the database. You have to point to the respective AppBinding
as a target of backup instead of the database itself.
Stash expect your database Secret to have username
and password
keys. If your database secret does not have them, the AppBinding
can also help here. You can specify a secretTransforms
section with the mapping between the current keys and the desired keys.
You don’t need to worry about appbindings if you are using KubeDB. It creates an appbinding containing the necessary informations when you deploy the database. Let’s ensure the appbinding create by KubeDB
operator.
$ kubectl get appbinding -n demo
NAME TYPE VERSION AGE
sample-mariadb kubedb.com/mariadb 10.5.23 62m
We have a appbinding named same as database name sample-mariadb
. We will use this later for connecting into this database.
Prepare Backend
We are going to store our backed up data into a GCS bucket. So, we need to create a Secret with GCS credentials and a Repository
object with the bucket information. If you want to use a different backend, please read the respective backend configuration doc from here.
Create Storage Secret:
At first, let’s create a secret called gcs-secret
with access credentials to our desired GCS bucket,
$ echo -n 'changeit' > RESTIC_PASSWORD
$ echo -n '<your-project-id>' > GOOGLE_PROJECT_ID
$ cat downloaded-sa-key.json > GOOGLE_SERVICE_ACCOUNT_JSON_KEY
$ kubectl create secret generic -n demo gcs-secret \
--from-file=./RESTIC_PASSWORD \
--from-file=./GOOGLE_PROJECT_ID \
--from-file=./GOOGLE_SERVICE_ACCOUNT_JSON_KEY
secret/gcs-secret created
Create Repository:
Now, crete a Repository
object with the information of your desired bucket. Below is the YAML of Repository
object we are going to create,
apiVersion: stash.appscode.com/v1alpha1
kind: Repository
metadata:
name: gcs-repo
namespace: demo
spec:
backend:
gcs:
bucket: stash-testing
prefix: /demo/mariadb/sample-mariadb
storageSecretName: gcs-secret
Let’s create the Repository
we have shown above,
$ kubectl apply -f https://github.com/logical/docs/raw/v2024.11.18/docs/guides/mariadb/backup/logical/cluster/examples/repository.yaml
repository.stash.appscode.com/gcs-repo created
Now, we are ready to backup our database into our desired backend.
Backup
To schedule a backup, we have to create a BackupConfiguration
object targeting the respective AppBinding
of our desired database. Then Stash will create a CronJob to periodically backup the database.
Create BackupConfiguration
Below is the YAML for BackupConfiguration
object we are going to use to backup the sample-mariadb
database we have deployed earlier,
apiVersion: stash.appscode.com/v1beta1
kind: BackupConfiguration
metadata:
name: sample-mariadb-backup
namespace: demo
spec:
schedule: "*/5 * * * *"
repository:
name: gcs-repo
target:
ref:
apiVersion: appcatalog.appscode.com/v1alpha1
kind: AppBinding
name: sample-mariadb
retentionPolicy:
name: keep-last-5
keepLast: 5
prune: true
Here,
.spec.schedule
specifies that we want to backup the database at 5 minutes intervals..spec.target.ref
refers to the AppBinding object that holds the connection information of our targeted database.
Let’s create the BackupConfiguration
object we have shown above,
$ kubectl apply -f https://github.com/logical/docs/raw/v2024.11.18/docs/guides/mariadb/backup/logical/cluster/examples/backupconfiguration.yaml
backupconfiguration.stash.appscode.com/sample-mariadb-backup created
Verify Backup Setup Successful
If everything goes well, the phase of the BackupConfiguration
should be Ready
. The Ready
phase indicates that the backup setup is successful. Let’s verify the Phase
of the BackupConfiguration,
$ kubectl get backupconfiguration -n demo
NAME TASK SCHEDULE PAUSED PHASE AGE
sample-mariadb-backup mariadb-backup-10.5.23 */5 * * * * Ready 11s
Verify CronJob
Stash will create a CronJob with the schedule specified in spec.schedule
field of BackupConfiguration
object.
Verify that the CronJob has been created using the following command,
$ kubectl get cronjob -n demo
NAME SCHEDULE SUSPEND ACTIVE LAST SCHEDULE AGE
stash-backup-sample-mariadb-backup */5 * * * * False 0 15s 17s
Wait for BackupSession
The sample-mariadb-backup
CronJob will trigger a backup on each scheduled slot by creating a BackupSession
object.
Now, wait for a schedule to appear. Run the following command to watch for a BackupSession
object,
$ kubectl get backupsession -n demo -w
NAME INVOKER-TYPE INVOKER-NAME PHASE AGE
sample-mariadb-backup-1606994706 BackupConfiguration sample-mariadb-backup Running 24s
sample-mariadb-backup-1606994706 BackupConfiguration sample-mariadb-backup Running 75s
sample-mariadb-backup-1606994706 BackupConfiguration sample-mariadb-backup Succeeded 103s
Here, the phase Succeeded
means that the backup process has been completed successfully.
Verify Backup
Now, we are going to verify whether the backed up data is present in the backend or not. Once a backup is completed, Stash will update the respective Repository
object to reflect the backup completion. Check that the repository gcs-repo
has been updated by the following command,
$ kubectl get repository -n demo gcs-repo
NAME INTEGRITY SIZE SNAPSHOT-COUNT LAST-SUCCESSFUL-BACKUP AGE
gcs-repo true 1.327 MiB 1 60s 8m
Now, if we navigate to the GCS bucket, we will see the backed up data has been stored in demo/mariadb/sample-mariadb
directory as specified by .spec.backend.gcs.prefix
field of the Repository
object.
Note: Stash keeps all the backed up data encrypted. So, data in the backend will not make any sense until they are decrypted.
Restore MariaDB
If you have followed the previous sections properly, you should have a successful logical backup of your MariaDB database. Now, we are going to show how you can restore the database from the backed up data.
Restore Into the Same Database
You can restore your data into the same database you have backed up from or into a different database in the same cluster or a different cluster. In this section, we are going to show you how to restore in the same database which may be necessary when you have accidentally deleted any data from the running database.
Temporarily Pause Backup
At first, let’s stop taking any further backup of the database so that no backup runs after we delete the sample data. We are going to pause the BackupConfiguration
object. Stash will stop taking any further backup when the BackupConfiguration
is paused.
Let’s pause the sample-mariadb-backup
BackupConfiguration,
$ kubectl patch backupconfiguration -n demo sample-mariadb-backup --type="merge" --patch='{"spec": {"paused": true}}'
backupconfiguration.stash.appscode.com/sample-mariadb-backup patched
Or you can use Stash kubectl
plugin to pause the BackupConfiguration,
$ kubectl stash pause backup -n demo --backupconfig=sample-mariadb-backup
BackupConfiguration demo/sample-mariadb-backup has been paused successfully.
Verify that the BackupConfiguration
has been paused,
$ kubectl get backupconfiguration -n demo sample-mariadb-backup
NAME TASK SCHEDULE PAUSED PHASE AGE
sample-mariadb-backup mariadb-backup-10.5.23 */5 * * * * true Ready 26m
Notice the PAUSED
column. Value true
for this field means that the BackupConfiguration
has been paused.
Stash will also suspend the respective CronJob.
$ kubectl get cronjob -n demo
NAME SCHEDULE SUSPEND ACTIVE LAST SCHEDULE AGE
stash-backup-sample-mariadb-backup */5 * * * * True 0 2m59s 20m
Simulate Disaster
Now, let’s simulate an accidental deletion scenario. Here, we are going to exec into the database pod and delete the company
database we had created earlier.
$ kubectl exec -it -n demo sample-mariadb-0 -c mariadb -- bash
root@sample-mariadb-0:/ mysql -u${MYSQL_ROOT_USERNAME} -p${MYSQL_ROOT_PASSWORD}
Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MariaDB connection id is 341
Server version: 10.5.23-MariaDB-1:10.5.23+maria~focal mariadb.org binary distribution
Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.
Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.
# View current databases
MariaDB [(none)]> show databases;
+--------------------+
| Database |
+--------------------+
| company |
| information_schema |
| mysql |
| performance_schema |
+--------------------+
4 rows in set (0.001 sec)
# Let's delete the "company" database
MariaDB [(none)]> drop database company;
Query OK, 1 row affected (0.268 sec)
# Verify that the "company" database has been deleted
MariaDB [(none)]> show databases;
+--------------------+
| Database |
+--------------------+
| information_schema |
| mysql |
| performance_schema |
+--------------------+
3 rows in set (0.000 sec)
MariaDB [(none)]> exit
Bye
Create RestoreSession
To restore the database, you have to create a RestoreSession
object pointing to the AppBinding
of the targeted database.
Here, is the YAML of the RestoreSession
object that we are going to use for restoring our sample-mariadb
database.
apiVersion: stash.appscode.com/v1beta1
kind: RestoreSession
metadata:
name: sample-mariadb-restore
namespace: demo
spec:
repository:
name: gcs-repo
target:
ref:
apiVersion: appcatalog.appscode.com/v1alpha1
kind: AppBinding
name: sample-mariadb
rules:
- snapshots: [latest]
Here,
.spec.repository.name
specifies the Repository object that holds the backend information where our backed up data has been stored..spec.target.ref
refers to the respective AppBinding of thesample-mariadb
database..spec.rules
specifies that we are restoring data from the latest backup snapshot of the database.
Let’s create the RestoreSession
object object we have shown above,
$ kubectl apply -f https://github.com/logical/docs/raw/v2024.11.18/docs/guides/mariadb/backup/logical/cluster/examples/restoresession.yaml
restoresession.stash.appscode.com/sample-mariadb-restore created
Once, you have created the RestoreSession
object, Stash will create a restore Job. Run the following command to watch the phase of the RestoreSession
object,
$ kubectl get restoresession -n demo -w
NAME REPOSITORY PHASE AGE
sample-mariadb-restore gcs-repo Running 15s
sample-mariadb-restore gcs-repo Succeeded 18s
The Succeeded
phase means that the restore process has been completed successfully.
Verify Restored Data
Now, let’s exec into the database pod and verify whether data actual data was restored or not,
$ kubectl exec -it -n demo sample-mariadb-0 -c mariadb -- bash
root@sample-mariadb-0:/ mysql -u${MYSQL_ROOT_USERNAME} -p${MYSQL_ROOT_PASSWORD}
Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MariaDB connection id is 341
Server version: 10.5.23-MariaDB-1:10.5.23+maria~focal mariadb.org binary distribution
Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.
Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.
# Verify that the "company" database has been restored
MariaDB [(none)]> show databases;
+--------------------+
| Database |
+--------------------+
| company |
| information_schema |
| mysql |
| performance_schema |
+--------------------+
4 rows in set (0.001 sec)
# Verify that the tables of the "company" database have been restored
MariaDB [(none)]> show tables from company;
+-------------------+
| Tables_in_company |
+-------------------+
| employees |
+-------------------+
1 row in set (0.000 sec)
# Verify that the sample data of the "employees" table has been restored
MariaDB [(none)]> select * from company.employees;
+---------------+--------+
| name | salary |
+---------------+--------+
| John Doe | 5000 |
| James William | 7000 |
+---------------+--------+
2 rows in set (0.000 sec)
MariaDB [(none)]> exit
Bye
Hence, we can see from the above output that the deleted data has been restored successfully from the backup.
Resume Backup
Since our data has been restored successfully we can now resume our usual backup process. Resume the BackupConfiguration
using following command,
$ kubectl patch backupconfiguration -n demo sample-mariadb-backup --type="merge" --patch='{"spec": {"paused": false}}'
backupconfiguration.stash.appscode.com/sample-mariadb-backup patched
Or you can use the Stash kubectl
plugin to resume the BackupConfiguration
,
$ kubectl stash resume -n demo --backupconfig=sample-mariadb-backup
BackupConfiguration demo/sample-mariadb-backup has been resumed successfully.
Verify that the BackupConfiguration
has been resumed,
$ kubectl get backupconfiguration -n demo sample-mariadb-backup
NAME TASK SCHEDULE PAUSED PHASE AGE
sample-mariadb-backup mariadb-backup-10.5.23 */5 * * * * false Ready 29m
Here, false
in the PAUSED
column means the backup has been resume successfully. The CronJob also should be resumed now.
$ kubectl get cronjob -n demo
NAME SCHEDULE SUSPEND ACTIVE LAST SCHEDULE AGE
stash-backup-sample-mariadb-backup */5 * * * * False 0 2m59s 29m
Here, False
in the SUSPEND
column means the CronJob is no longer suspended and will trigger in the next schedule.
Restore Into Different Database of the Same Namespace
If you want to restore the backed up data into a different database of the same namespace, you have to use the AppBinding
of desired database. Then, you have to create the RestoreSession
pointing to the new AppBinding
.
Restore Into Different Namespace
If you want to restore into a different namespace of the same cluster, you have to create the Repository, backend Secret in the desired namespace. You can use Stash kubectl plugin to easily copy the resources into a new namespace. Then, you have to create the RestoreSession
object in the desired namespace pointing to the Repository, AppBinding of that namespace.
Restore Into Different Cluster
If you want to restore into a different cluster, you have to install Stash in the desired cluster. Then, you have to install Stash MariaDB addon in that cluster too. Then, you have to create the Repository, backend Secret, AppBinding, in the desired cluster. Finally, you have to create the RestoreSession
object in the desired cluster pointing to the Repository, AppBinding of that cluster.
Cleanup
To cleanup the Kubernetes resources created by this tutorial, run:
kubectl delete -n demo backupconfiguration sample-mariadb-backup
kubectl delete -n demo restoresession sample-mariadb-restore
kubectl delete -n demo repository gcs-repo
# delete the database resources
kubectl delete ns demo