You are looking at the documentation of a prior release. To read the documentation of the latest release, please visit here.

New to KubeDB? Please start here.

Autoscaling the Compute Resource of a MSSQLServer Availability Group Cluster Database

This guide will show you how to use KubeDB to auto-scale compute resources i.e. cpu and memory of a MSSQLServer cluster database.

Before You Begin

  • You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured to communicate with your cluster. If you do not already have a cluster, you can create one by using kind.

  • Now, install KubeDB cli on your workstation and KubeDB operator in your cluster following the steps here. Make sure install with helm command including --set global.featureGates.MSSQLServer=true to ensure MSSQLServer CRD installation.

  • To configure TLS/SSL in MSSQLServer, KubeDB uses cert-manager to issue certificates. So first you have to make sure that the cluster has cert-manager installed. To install cert-manager in your cluster following steps here.

  • Install Metrics Server from here

  • You should be familiar with the following KubeDB concepts:

To keep everything isolated, we are going to use a separate namespace called demo throughout this tutorial.

$ kubectl create ns demo
namespace/demo created

Autoscaling of MSSQLServer Availability Group Cluster

Here, we are going to deploy a MSSQLServer Availability Group Cluster using a supported version by KubeDB operator. Then we are going to apply MSSQLServerAutoscaler to set up autoscaling.

Deploy MSSQLServer Availability Group Cluster

First, an issuer needs to be created, even if TLS is not enabled for SQL Server. The issuer will be used to configure the TLS-enabled Wal-G proxy server, which is required for the SQL Server backup and restore operations.

Create Issuer/ClusterIssuer

Now, we are going to create an example Issuer that will be used throughout the duration of this tutorial. Alternatively, you can follow this cert-manager tutorial to create your own Issuer. By following the below steps, we are going to create our desired issuer,

  • Start off by generating our ca-certificates using openssl,
openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout ./ca.key -out ./ca.crt -subj "/CN=MSSQLServer/O=kubedb"
  • Create a secret using the certificate files we have just generated,
$ kubectl create secret tls mssqlserver-ca --cert=ca.crt  --key=ca.key --namespace=demo 
secret/mssqlserver-ca created

Now, we are going to create an Issuer using the mssqlserver-ca secret that contains the ca-certificate we have just created. Below is the YAML of the Issuer CR that we are going to create,

apiVersion: cert-manager.io/v1
kind: Issuer
metadata:
 name: mssqlserver-ca-issuer
 namespace: demo
spec:
 ca:
   secretName: mssqlserver-ca

Let’s create the Issuer CR we have shown above,

$ kubectl create -f https://github.com/kubedb/docs/raw/v2024.11.18/docs/examples/mssqlserver/ag-cluster/mssqlserver-ca-issuer.yaml
issuer.cert-manager.io/mssqlserver-ca-issuer created

In this section, we are going to deploy a MSSQLServer Availability Group Cluster with version 2022-cu12. Then, in the next section we will set up autoscaling for this database using MSSQLServerAutoscaler CRD. Below is the YAML of the MSSQLServer CR that we are going to create,

apiVersion: kubedb.com/v1alpha2
kind: MSSQLServer
metadata:
  name: mssqlserver-ag-cluster
  namespace: demo
spec:
  version: "2022-cu12"
  replicas: 3
  topology:
    mode: AvailabilityGroup
    availabilityGroup:
      databases:
        - agdb1
        - agdb2
  tls:
    issuerRef:
      name: mssqlserver-ca-issuer
      kind: Issuer
      apiGroup: "cert-manager.io"
    clientTLS: false
  podTemplate:
    spec:
      containers:
        - name: mssql
          env:
            - name: ACCEPT_EULA
              value: "Y"
            - name: MSSQL_PID
              value: Evaluation # Change it 
          resources:
            requests:
              cpu: "500m"
              memory: "1.5Gi"
            limits:
              cpu: "600m"
              memory: "1.6Gi"
  storageType: Durable
  storage:
    storageClassName: "longhorn"
    accessModes:
      - ReadWriteOnce
    resources:
      requests:
        storage: 1Gi
  deletionPolicy: WipeOut

Let’s create the MSSQLServer CRO we have shown above,

$ kubectl create -f https://github.com/kubedb/docs/raw/v2024.11.18/docs/examples/mssqlserver/autoscaler/compute/mssqlserver-ag-cluster.yaml
mssqlserver.kubedb.com/mssqlserver-ag-cluster created

Now, wait until mssqlserver-ag-cluster has status Ready. i.e,

$ kubectl get mssqlserver -n demo
NAME                     VERSION     STATUS   AGE
mssqlserver-ag-cluster   2022-cu12   Ready    8m27s

Let’s check the MSSQLServer resources,

$ kubectl get ms -n demo mssqlserver-ag-cluster -o json | jq '.spec.podTemplate.spec.containers[] | select(.name == "mssql") | .resources'
{
  "limits": {
    "cpu": "600m",
    "memory": "1717986918400m"
  },
  "requests": {
    "cpu": "500m",
    "memory": "1536Mi"
  }
}

Let’s check the Pod containers resources, there are two containers here, first one with index 0 named mssql is the main container of mssqlserver.

$ kubectl get pod -n demo mssqlserver-ag-cluster-0 -o json | jq '.spec.containers[0].resources'
{
  "limits": {
    "cpu": "600m",
    "memory": "1717986918400m"
  },
  "requests": {
    "cpu": "500m",
    "memory": "1536Mi"
  }
}
$ kubectl get pod -n demo mssqlserver-ag-cluster-1 -o json | jq '.spec.containers[0].resources'
{
  "limits": {
    "cpu": "600m",
    "memory": "1717986918400m"
  },
  "requests": {
    "cpu": "500m",
    "memory": "1536Mi"
  }
}
$ kubectl get pod -n demo mssqlserver-ag-cluster-2 -o json | jq '.spec.containers[0].resources'
{
  "limits": {
    "cpu": "600m",
    "memory": "1717986918400m"
  },
  "requests": {
    "cpu": "500m",
    "memory": "1536Mi"
  }
}

You can see from the above outputs that the resources are same as the one we have assigned while deploying the mssqlserver.

We are now ready to apply the MSSQLServerAutoscaler CRO to set up autoscaling for this database.

Compute Resource Autoscaling

Here, we are going to set up compute resource autoscaling using a MSSQLServerAutoscaler Object.

Create MSSQLServerAutoscaler Object

In order to set up compute resource autoscaling for this database cluster, we have to create a MSSQLServerAutoscaler CRO with our desired configuration. Below is the YAML of the MSSQLServerAutoscaler object that we are going to create,

apiVersion: autoscaling.kubedb.com/v1alpha1
kind: MSSQLServerAutoscaler
metadata:
  name: ms-as-compute
  namespace: demo
spec:
  databaseRef:
    name: mssqlserver-ag-cluster
  opsRequestOptions:
    timeout: 5m
    apply: IfReady
  compute:
    mssqlserver:
      trigger: "On"
      podLifeTimeThreshold: 5m
      resourceDiffPercentage: 10
      minAllowed:
        cpu: 800m
        memory: 2Gi
      maxAllowed:
        cpu: 1
        memory: 3Gi
      containerControlledValues: "RequestsAndLimits"
      controlledResources: ["cpu", "memory"]

Here,

  • spec.databaseRef.name specifies that we are performing compute resource scaling operation on mssqlserver-ag-cluster database.
  • spec.compute.mssqlserver.trigger specifies that compute autoscaling is enabled for this database.
  • spec.compute.mssqlserver.podLifeTimeThreshold specifies the minimum lifetime for at least one of the pod to initiate a vertical scaling.
  • spec.compute.mssqlserver.resourceDiffPercentage specifies the minimum resource difference in percentage. The default is 10%. If the difference between current & recommended resource is less than ResourceDiffPercentage, Autoscaler Operator will ignore the updating.
  • spec.compute.mssqlserver.minAllowed specifies the minimum allowed resources for the database.
  • spec.compute.mssqlserver.maxAllowed specifies the maximum allowed resources for the database.
  • spec.compute.mssqlserver.controlledResources specifies the resources that are controlled by the autoscaler.
  • spec.compute.mssqlserver.containerControlledValues specifies which resource values should be controlled. The default is “RequestsAndLimits”.
  • spec.opsRequestOptions.apply has two supported value : IfReady & Always. Use IfReady if you want to process the opsReq only when the database is Ready. And use Always if you want to process the execution of opsReq irrespective of the Database state.
  • spec.opsRequestOptions.timeout specifies the maximum time for each step of the opsRequest(in seconds). If a step doesn’t finish within the specified timeout, the ops request will result in failure.

Let’s create the MSSQLServerAutoscaler CR we have shown above,

$ kubectl apply -f https://github.com/kubedb/docs/raw/v2024.11.18/docs/examples/mssqlserver/autoscaler/compute/ms-as-compute.yaml
mssqlserverautoscaler.autoscaling.kubedb.com/ms-as-compute created

Verify Autoscaling is set up successfully

Let’s check that the mssqlserverautoscaler resource is created successfully,

$ kubectl get mssqlserverautoscaler -n demo
NAME            AGE
ms-as-compute   16s

$ kubectl describe mssqlserverautoscaler ms-as-compute -n demo
Name:         ms-as-compute
Namespace:    demo
Labels:       <none>
Annotations:  <none>
API Version:  autoscaling.kubedb.com/v1alpha1
Kind:         MSSQLServerAutoscaler
Metadata:
  Creation Timestamp:  2024-10-25T15:02:58Z
  Generation:          1
  Resource Version:    106200
  UID:                 cc34737b-2e42-4b94-bcc4-cfcac98eb6a6
Spec:
  Compute:
    Mssqlserver:
      Container Controlled Values:  RequestsAndLimits
      Controlled Resources:
        cpu
        memory
      Max Allowed:
        Cpu:     1
        Memory:  3Gi
      Min Allowed:
        Cpu:                     800m
        Memory:                  2Gi
      Pod Life Time Threshold:   5m
      Resource Diff Percentage:  10
      Trigger:                   On
  Database Ref:
    Name:  mssqlserver-ag-cluster
  Ops Request Options:
    Apply:    IfReady
    Timeout:  5m
Status:
  Checkpoints:
    Cpu Histogram:
      Bucket Weights:
        Index:              0
        Weight:             524
        Index:              20
        Weight:             456
        Index:              28
        Weight:             2635
        Index:              34
        Weight:             455
        Index:              35
        Weight:             10000
        Index:              36
        Weight:             6980
      Reference Timestamp:  2024-10-25T15:10:00Z
      Total Weight:         2.465794209092962
    First Sample Start:     2024-10-25T15:03:11Z
    Last Sample Start:      2024-10-25T15:13:21Z
    Last Update Time:       2024-10-25T15:13:34Z
    Memory Histogram:
      Bucket Weights:
        Index:              36
        Weight:             10000
        Index:              37
        Weight:             5023
        Index:              39
        Weight:             5710
        Index:              40
        Weight:             2918
      Reference Timestamp:  2024-10-25T15:15:00Z
      Total Weight:         2.8324869288693995
    Ref:
      Container Name:     mssql
      Vpa Object Name:    mssqlserver-ag-cluster
    Total Samples Count:  30
    Version:              v3
    Cpu Histogram:
      Bucket Weights:
        Index:              0
        Weight:             10000
        Index:              1
        Weight:             3741
        Index:              2
        Weight:             1924
      Reference Timestamp:  2024-10-25T15:10:00Z
      Total Weight:         2.033798492571757
    First Sample Start:     2024-10-25T15:03:11Z
    Last Sample Start:      2024-10-25T15:12:22Z
    Last Update Time:       2024-10-25T15:12:34Z
    Memory Histogram:
      Bucket Weights:
        Index:              3
        Weight:             1357
        Index:              4
        Weight:             10000
      Reference Timestamp:  2024-10-25T15:15:00Z
      Total Weight:         2.8324869288693995
    Ref:
      Container Name:     mssql-coordinator
      Vpa Object Name:    mssqlserver-ag-cluster
    Total Samples Count:  26
    Version:              v3
  Conditions:
    Last Transition Time:  2024-10-25T15:10:27Z
    Message:               Successfully created MSSQLServerOpsRequest demo/msops-mssqlserver-ag-cluster-v5xep9
    Observed Generation:   1
    Reason:                CreateOpsRequest
    Status:                True
    Type:                  CreateOpsRequest
  Vpas:
    Conditions:
      Last Transition Time:  2024-10-25T15:03:34Z
      Status:                True
      Type:                  RecommendationProvided
    Recommendation:
      Container Recommendations:
        Container Name:  mssql
        Lower Bound:
          Cpu:     844m
          Memory:  2Gi
        Target:
          Cpu:     1
          Memory:  2Gi
        Uncapped Target:
          Cpu:     1168m
          Memory:  1389197403
        Upper Bound:
          Cpu:           1
          Memory:        3Gi
        Container Name:  mssql-coordinator
        Lower Bound:
          Cpu:     50m
          Memory:  131072k
        Target:
          Cpu:     50m
          Memory:  131072k
        Uncapped Target:
          Cpu:     50m
          Memory:  131072k
        Upper Bound:
          Cpu:     4992m
          Memory:  9063982612
    Vpa Name:      mssqlserver-ag-cluster
Events:            <none>

So, the mssqlserverautoscaler resource is created successfully.

We can verify from the above output that status.vpas contains the RecommendationProvided condition to true. And in the same time, status.vpas.recommendation.containerRecommendations contain the actual generated recommendation.

Our autoscaler operator continuously watches the recommendation generated and creates an mssqlserveropsrequest based on the recommendations, if the database pod resources are needed to scaled up or down.

Let’s watch the mssqlserveropsrequest in the demo namespace to see if any mssqlserveropsrequest object is created. After some time you’ll see that a mssqlserveropsrequest will be created based on the recommendation.

$ kubectl get mssqlserveropsrequest -n demo
NAME                          TYPE              STATUS       AGE
msops-mssqlserver-ag-cluster-6xc1kc   VerticalScaling   Progressing  7s

Let’s wait for the ops request to become successful.

$ kubectl get mssqlserveropsrequest -n demo
NAME                                  TYPE              STATUS       AGE
msops-mssqlserver-ag-cluster-8li26q   VerticalScaling   Successful   11m

We can see from the above output that the MSSQLServerOpsRequest has succeeded. If we describe the MSSQLServerOpsRequest we will get an overview of the steps that were followed to scale the database.

$ kubectl describe msops -n demo msops-mssqlserver-ag-cluster-8li26q
Name:         msops-mssqlserver-ag-cluster-8li26q
Namespace:    demo
Labels:       app.kubernetes.io/component=database
              app.kubernetes.io/instance=mssqlserver-ag-cluster
              app.kubernetes.io/managed-by=kubedb.com
              app.kubernetes.io/name=mssqlservers.kubedb.com
Annotations:  <none>
API Version:  ops.kubedb.com/v1alpha1
Kind:         MSSQLServerOpsRequest
Metadata:
  Creation Timestamp:  2024-10-25T15:04:27Z
  Generation:          1
  Owner References:
    API Version:           autoscaling.kubedb.com/v1alpha1
    Block Owner Deletion:  true
    Controller:            true
    Kind:                  MSSQLServerAutoscaler
    Name:                  ms-as-compute
    UID:                   cc34737b-2e42-4b94-bcc4-cfcac98eb6a6
  Resource Version:        105300
  UID:                     b2f29a6a-f4cf-4c97-871c-f203e08af320
Spec:
  Apply:  IfReady
  Database Ref:
    Name:   mssqlserver-ag-cluster
  Timeout:  5m0s
  Type:     VerticalScaling
  Vertical Scaling:
    Mssqlserver:
      Resources:
        Limits:
          Cpu:     960m
          Memory:  2290649225
        Requests:
          Cpu:     800m
          Memory:  2Gi
Status:
  Conditions:
    Last Transition Time:  2024-10-25T15:04:27Z
    Message:               MSSQLServer ops-request has started to vertically scaling the MSSQLServer nodes
    Observed Generation:   1
    Reason:                VerticalScaling
    Status:                True
    Type:                  VerticalScaling
    Last Transition Time:  2024-10-25T15:04:30Z
    Message:               Successfully paused database
    Observed Generation:   1
    Reason:                DatabasePauseSucceeded
    Status:                True
    Type:                  DatabasePauseSucceeded
    Last Transition Time:  2024-10-25T15:04:30Z
    Message:               Successfully updated PetSets Resources
    Observed Generation:   1
    Reason:                UpdatePetSets
    Status:                True
    Type:                  UpdatePetSets
    Last Transition Time:  2024-10-25T15:04:35Z
    Message:               get pod; ConditionStatus:True; PodName:mssqlserver-ag-cluster-0
    Observed Generation:   1
    Status:                True
    Type:                  GetPod--mssqlserver-ag-cluster-0
    Last Transition Time:  2024-10-25T15:04:35Z
    Message:               evict pod; ConditionStatus:True; PodName:mssqlserver-ag-cluster-0
    Observed Generation:   1
    Status:                True
    Type:                  EvictPod--mssqlserver-ag-cluster-0
    Last Transition Time:  2024-10-25T15:05:15Z
    Message:               check pod running; ConditionStatus:True; PodName:mssqlserver-ag-cluster-0
    Observed Generation:   1
    Status:                True
    Type:                  CheckPodRunning--mssqlserver-ag-cluster-0
    Last Transition Time:  2024-10-25T15:05:20Z
    Message:               get pod; ConditionStatus:True; PodName:mssqlserver-ag-cluster-1
    Observed Generation:   1
    Status:                True
    Type:                  GetPod--mssqlserver-ag-cluster-1
    Last Transition Time:  2024-10-25T15:05:20Z
    Message:               evict pod; ConditionStatus:True; PodName:mssqlserver-ag-cluster-1
    Observed Generation:   1
    Status:                True
    Type:                  EvictPod--mssqlserver-ag-cluster-1
    Last Transition Time:  2024-10-25T15:05:55Z
    Message:               check pod running; ConditionStatus:True; PodName:mssqlserver-ag-cluster-1
    Observed Generation:   1
    Status:                True
    Type:                  CheckPodRunning--mssqlserver-ag-cluster-1
    Last Transition Time:  2024-10-25T15:06:00Z
    Message:               get pod; ConditionStatus:True; PodName:mssqlserver-ag-cluster-2
    Observed Generation:   1
    Status:                True
    Type:                  GetPod--mssqlserver-ag-cluster-2
    Last Transition Time:  2024-10-25T15:06:00Z
    Message:               evict pod; ConditionStatus:True; PodName:mssqlserver-ag-cluster-2
    Observed Generation:   1
    Status:                True
    Type:                  EvictPod--mssqlserver-ag-cluster-2
    Last Transition Time:  2024-10-25T15:06:35Z
    Message:               check pod running; ConditionStatus:True; PodName:mssqlserver-ag-cluster-2
    Observed Generation:   1
    Status:                True
    Type:                  CheckPodRunning--mssqlserver-ag-cluster-2
    Last Transition Time:  2024-10-25T15:06:40Z
    Message:               Successfully Restarted Pods With Resources
    Observed Generation:   1
    Reason:                RestartPods
    Status:                True
    Type:                  RestartPods
    Last Transition Time:  2024-10-25T15:06:40Z
    Message:               Successfully completed the VerticalScaling for MSSQLServer
    Observed Generation:   1
    Reason:                Successful
    Status:                True
    Type:                  Successful
  Observed Generation:     1
  Phase:                   Successful

Now, we are going to verify from the Pod, and the MSSQLServer yaml whether the resources of the cluster database has updated to meet up the desired state, Let’s check,

$ kubectl get pod -n demo mssqlserver-ag-cluster-0 -o json | jq '.spec.containers[0].resources'
{
  "limits": {
    "cpu": "960m",
    "memory": "2290649225"
  },
  "requests": {
    "cpu": "800m",
    "memory": "2Gi"
  }
}

$ kubectl get ms -n demo mssqlserver-ag-cluster -o json | jq '.spec.podTemplate.spec.containers[] | select(.name == "mssql") | .resources'
{
  "limits": {
    "cpu": "960m",
    "memory": "2290649225"
  },
  "requests": {
    "cpu": "800m",
    "memory": "2Gi"
  }
}

The above output verifies that we have successfully autoscaled the resources of the MSSQLServer cluster.

Autoscaling for Standalone MSSQLServer

Autoscaling for Standalone MSSQLServer is exactly same as cluster mode. Just refer the standalone mssqlserver in databaseRef field of MSSQLServerAutoscaler spec.

Cleaning Up

To clean up the Kubernetes resources created by this tutorial, run:

kubectl delete mssqlserver -n demo mssqlserver-ag-cluster
kubectl delete mssqlserverautoscaler -n demo ms-as-compute
kubectl delete issuer -n demo mssqlserver-ca-issuer
kubectl delete secret -n demo mssqlserver-ca
kubectl delete ns demo