You are looking at the documentation of a prior release. To read the documentation of the latest release, please
visit here.
New to KubeDB? Please start here.
Storage Autoscaling of a Postgres Cluster
This guide will show you how to use KubeDB
to autoscale the storage of a Postgres Replicaset database.
Before You Begin
At first, you need to have a Kubernetes cluster, and the
kubectl
command-line tool must be configured to communicate with your cluster.Install
KubeDB
Community, Enterprise and Autoscaler operator in your cluster following the steps here.Install
Metrics Server
from hereInstall Prometheus from here
You must have a
StorageClass
that supports volume expansion.You should be familiar with the following
KubeDB
concepts:
To keep everything isolated, we are going to use a separate namespace called demo
throughout this tutorial.
$ kubectl create ns demo
namespace/demo created
Storage Autoscaling of Cluster Database
At first verify that your cluster has a storage class, that supports volume expansion. Let’s check,
$ kubectl get storageclass
NAME PROVISIONER RECLAIMPOLICY VOLUMEBINDINGMODE ALLOWVOLUMEEXPANSION AGE
standard (default) rancher.io/local-path Delete WaitForFirstConsumer false 79m
topolvm-provisioner topolvm.cybozu.com Delete WaitForFirstConsumer true 78m
We can see from the output the topolvm-provisioner
storage class has ALLOWVOLUMEEXPANSION
field as true. So, this storage class supports volume expansion. We can use it. You can install topolvm from here
Now, we are going to deploy a Postgres
cluster using a supported version by KubeDB
operator. Then we are going to apply PostgresAutoscaler
to set up autoscaling.
Deploy Postgres Cluster
In this section, we are going to deploy a Postgres cluster database with version 16.1
. Then, in the next section we will set up autoscaling for this database using PostgresAutoscaler
CRD. Below is the YAML of the Postgres
CR that we are going to create,
If you want to autoscale Postgres
Standalone
, Just remove thespec.Replicas
from the below yaml and rest of the steps are same.
apiVersion: kubedb.com/v1
kind: Postgres
metadata:
name: ha-postgres
namespace: demo
spec:
version: "16.1"
replicas: 3
storageType: Durable
storage:
storageClassName: "topolvm-provisioner"
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi
deletionPolicy: WipeOut
Let’s create the Postgres
CRO we have shown above,
$ kubectl create -f https://github.com/kubedb/docs/raw/v2024.11.18/docs/examples/postgres/autoscaler/storage/ha-postgres.yaml
postgres.kubedb.com/ha-postgres created
Now, wait until ha-postgres
has status Ready
. i.e,
$ kubectl get postgres -n demo
NAME VERSION STATUS AGE
ha-postgres 16.1 Ready 3m46s
Let’s check volume size from petset, and from the persistent volume,
$ kubectl get sts -n demo ha-postgres -o json | jq '.spec.volumeClaimTemplates[].spec.resources.requests.storage'
"1Gi"
$ kubectl get pv -n demo
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
pvc-43266d76-f280-4cca-bd78-d13660a84db9 1Gi RWO Delete Bound demo/data-ha-postgres-2 topolvm-provisioner 57s
pvc-4a509b05-774b-42d9-b36d-599c9056af37 1Gi RWO Delete Bound demo/data-ha-postgres-0 topolvm-provisioner 58s
pvc-c27eee12-cd86-4410-b39e-b1dd735fc14d 1Gi RWO Delete Bound demo/data-ha-postgres-1 topolvm-provisioner 57s
You can see the petset has 1GB storage, and the capacity of all the persistent volume is also 1GB.
We are now ready to apply the PostgresAutoscaler
CRO to set up storage autoscaling for this database.
Storage Autoscaling
Here, we are going to set up storage autoscaling using a PostgresAutoscaler
Object.
Create PostgresAutoscaler Object
In order to set up vertical autoscaling for this cluster database, we have to create a PostgresAutoscaler
CRO with our desired configuration. Below is the YAML of the PostgresAutoscaler
object that we are going to create,
apiVersion: autoscaling.kubedb.com/v1alpha1
kind: PostgresAutoscaler
metadata:
name: pg-as-st
namespace: demo
spec:
databaseRef:
name: ha-postgres
storage:
postgres:
trigger: "On"
usageThreshold: 20
scalingThreshold: 20
expansionMode: "Online"
Here,
spec.databaseRef.name
specifies that we are performing vertical scaling operation onha-postgres
database.spec.storage.postgres.trigger
specifies that storage autoscaling is enabled for this database.spec.storage.postgres.usageThreshold
specifies storage usage threshold, if storage usage exceeds20%
then storage autoscaling will be triggered.spec.storage.postgres.scalingThreshold
specifies the scaling threshold. Storage will be scaled to20%
of the current amount.spec.storage.postgres.expansionMode
specifies the expansion mode of volume expansionPostgresOpsRequest
created byPostgresAutoscaler
. topolvm-provisioner supports online volume expansion so hereexpansionMode
is set as “Online”.
Let’s create the PostgresAutoscaler
CR we have shown above,
$ kubectl apply -f https://github.com/kubedb/docs/raw/v2024.11.18/docs/examples/postgres/autoscaler/storage/pgas-storage.yaml
postgresautoscaler.autoscaling.kubedb.com/pg-as-st created
Storage Autoscaling is set up successfully
Let’s check that the postgresautoscaler
resource is created successfully,
$ kubectl get postgresautoscaler -n demo
NAME AGE
pg-as-st 33s
$ kubectl describe postgresautoscaler pg-as-st -n demo
Name: pg-as-st
Namespace: demo
Labels: <none>
Annotations: API Version: autoscaling.kubedb.com/v1alpha1
Kind: PostgresAutoscaler
Metadata:
Creation Timestamp: 2022-01-14T06:08:02Z
Generation: 1
Managed Fields:
...
Resource Version: 24009
UID: 4f45a3b3-fc72-4d04-b52c-a770944311f6
Spec:
Database Ref:
Name: ha-postgres
Storage:
Mariadb:
Scaling Threshold: 20
Trigger: On
Usage Threshold: 20
Events: <none>
So, the postgresautoscaler
resource is created successfully.
Now, for this demo, we are going to manually fill up the persistent volume to exceed the usageThreshold
using dd
command to see if storage autoscaling is working or not.
Let’s exec into the database pod and fill the database volume(/var/pv/data
) using the following commands:
$ kubectl exec -it -n demo ha-postgres-0 -- bash
root@ha-postgres-0:/ df -h /var/pv/data
Filesystem Size Used Avail Use% Mounted on
/dev/topolvm/57cd4330-784f-42c1-bf8e-e743241df164 1014M 357M 658M 36% /var/pv/data
root@ha-postgres-0:/ dd if=/dev/zero of=/var/pv/data/file.img bs=500M count=1
1+0 records in
1+0 records out
524288000 bytes (524 MB, 500 MiB) copied, 0.340877 s, 1.5 GB/s
root@ha-postgres-0:/ df -h /var/pv/data
Filesystem Size Used Avail Use% Mounted on
/dev/topolvm/57cd4330-784f-42c1-bf8e-e743241df164 1014M 857M 158M 85% /var/pv/data
So, from the above output we can see that the storage usage is 83%, which exceeded the usageThreshold
20%.
Let’s watch the postgresopsrequest
in the demo namespace to see if any postgresopsrequest
object is created. After some time you’ll see that a postgresopsrequest
of type VolumeExpansion
will be created based on the scalingThreshold
.
$ kubectl get postgresopsrequest -n demo
NAME TYPE STATUS AGE
pgops-ha-postgres-xojkua VolumeExpansion Progressing 15s
Let’s wait for the ops request to become successful.
$ kubectl get postgresopsrequest -n demo
NAME TYPE STATUS AGE
pgops-ha-postgres-xojkua VolumeExpansion Successful 97s
We can see from the above output that the PostgresOpsRequest
has succeeded. If we describe the PostgresOpsRequest
we will get an overview of the steps that were followed to expand the volume of the database.
$ kubectl describe postgresopsrequest -n demo pgops-ha-postgres-xojkua
Name: pgops-ha-postgres-xojkua
Namespace: demo
Labels: app.kubernetes.io/component=database
app.kubernetes.io/instance=ha-postgres
app.kubernetes.io/managed-by=kubedb.com
app.kubernetes.io/name=postgress.kubedb.com
Annotations: <none>
API Version: ops.kubedb.com/v1alpha1
Kind: PostgresOpsRequest
Metadata:
Creation Timestamp: 2022-01-14T06:13:10Z
Generation: 1
Managed Fields: ...
Owner References:
API Version: autoscaling.kubedb.com/v1alpha1
Block Owner Deletion: true
Controller: true
Kind: PostgresAutoscaler
Name: pg-as-st
UID: 4f45a3b3-fc72-4d04-b52c-a770944311f6
Resource Version: 25557
UID: 90763a49-a03f-407c-a233-fb20c4ab57d7
Spec:
Database Ref:
Name: ha-postgres
Type: VolumeExpansion
Volume Expansion:
Mariadb: 1594884096
Status:
Conditions:
Last Transition Time: 2022-01-14T06:13:10Z
Message: Controller has started to Progress the PostgresOpsRequest: demo/mops-ha-postgres-xojkua
Observed Generation: 1
Reason: OpsRequestProgressingStarted
Status: True
Type: Progressing
Last Transition Time: 2022-01-14T06:14:25Z
Message: Volume Expansion performed successfully in Postgres pod for PostgresOpsRequest: demo/mops-ha-postgres-xojkua
Observed Generation: 1
Reason: SuccessfullyVolumeExpanded
Status: True
Type: VolumeExpansion
Last Transition Time: 2022-01-14T06:14:25Z
Message: Controller has successfully expand the volume of Postgres demo/mops-ha-postgres-xojkua
Observed Generation: 1
Reason: OpsRequestProcessedSuccessfully
Status: True
Type: Successful
Observed Generation: 3
Phase: Successful
Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Normal Starting 2m58s KubeDB Enterprise Operator Start processing for PostgresOpsRequest: demo/mops-ha-postgres-xojkua
Normal Starting 2m58s KubeDB Enterprise Operator Pausing Postgres databse: demo/ha-postgres
Normal Successful 2m58s KubeDB Enterprise Operator Successfully paused Postgres database: demo/ha-postgres for PostgresOpsRequest: mops-ha-postgres-xojkua
Normal Successful 103s KubeDB Enterprise Operator Volume Expansion performed successfully in Postgres pod for PostgresOpsRequest: demo/mops-ha-postgres-xojkua
Normal Starting 103s KubeDB Enterprise Operator Updating Postgres storage
Normal Successful 103s KubeDB Enterprise Operator Successfully Updated Postgres storage
Normal Starting 103s KubeDB Enterprise Operator Resuming Postgres database: demo/ha-postgres
Normal Successful 103s KubeDB Enterprise Operator Successfully resumed Postgres database: demo/ha-postgres
Normal Successful 103s KubeDB Enterprise Operator Controller has Successfully expand the volume of Postgres: demo/ha-postgres
Now, we are going to verify from the Petset
, and the Persistent Volume
whether the volume of the cluster database has expanded to meet the desired state, Let’s check,
$ kubectl get sts -n demo ha-postgres -o json | jq '.spec.volumeClaimTemplates[].spec.resources.requests.storage'
"1594884096"
$ kubectl get pv -n demo
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
pvc-43266d76-f280-4cca-bd78-d13660a84db9 2Gi RWO Delete Bound demo/data-ha-postgres-2 topolvm-provisioner 23m
pvc-4a509b05-774b-42d9-b36d-599c9056af37 2Gi RWO Delete Bound demo/data-ha-postgres-0 topolvm-provisioner 24m
pvc-c27eee12-cd86-4410-b39e-b1dd735fc14d 2Gi RWO Delete Bound demo/data-ha-postgres-1 topolvm-provisioner 23m
The above output verifies that we have successfully autoscaled the volume of the Postgres cluster database.
Cleaning Up
To clean up the Kubernetes resources created by this tutorial, run:
kubectl delete postgres -n demo ha-postgres
kubectl delete postgresautoscaler -n demo pg-as-st
kubectl delete ns demo