You are looking at the documentation of a prior release. To read the documentation of the latest release, please
visit here.
New to KubeDB? Please start here.
Autoscaling the Compute Resource of a MSSQLServer Availability Group Cluster Database
This guide will show you how to use KubeDB
to auto-scale compute resources i.e. cpu and memory of a MSSQLServer cluster database.
Before You Begin
You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured to communicate with your cluster. If you do not already have a cluster, you can create one by using kind.
Now, install KubeDB cli on your workstation and KubeDB operator in your cluster following the steps here. Make sure install with helm command including
--set global.featureGates.MSSQLServer=true
to ensure MSSQLServer CRD installation.To configure TLS/SSL in
MSSQLServer
,KubeDB
usescert-manager
to issue certificates. So first you have to make sure that the cluster hascert-manager
installed. To installcert-manager
in your cluster following steps here.Install
Metrics Server
from hereYou should be familiar with the following
KubeDB
concepts:
To keep everything isolated, we are going to use a separate namespace called demo
throughout this tutorial.
$ kubectl create ns demo
namespace/demo created
Autoscaling of MSSQLServer Availability Group Cluster
Here, we are going to deploy a MSSQLServer
Availability Group Cluster using a supported version by KubeDB
operator. Then we are going to apply MSSQLServerAutoscaler
to set up autoscaling.
Deploy MSSQLServer Availability Group Cluster
First, an issuer needs to be created, even if TLS is not enabled for SQL Server. The issuer will be used to configure the TLS-enabled Wal-G proxy server, which is required for the SQL Server backup and restore operations.
Create Issuer/ClusterIssuer
Now, we are going to create an example Issuer
that will be used throughout the duration of this tutorial. Alternatively, you can follow this cert-manager tutorial to create your own Issuer
. By following the below steps, we are going to create our desired issuer,
- Start off by generating our ca-certificates using openssl,
openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout ./ca.key -out ./ca.crt -subj "/CN=MSSQLServer/O=kubedb"
- Create a secret using the certificate files we have just generated,
$ kubectl create secret tls mssqlserver-ca --cert=ca.crt --key=ca.key --namespace=demo
secret/mssqlserver-ca created
Now, we are going to create an Issuer
using the mssqlserver-ca
secret that contains the ca-certificate we have just created. Below is the YAML of the Issuer
CR that we are going to create,
apiVersion: cert-manager.io/v1
kind: Issuer
metadata:
name: mssqlserver-ca-issuer
namespace: demo
spec:
ca:
secretName: mssqlserver-ca
Let’s create the Issuer
CR we have shown above,
$ kubectl create -f https://github.com/kubedb/docs/raw/v2024.11.8-rc.0/docs/examples/mssqlserver/ag-cluster/mssqlserver-ca-issuer.yaml
issuer.cert-manager.io/mssqlserver-ca-issuer created
In this section, we are going to deploy a MSSQLServer Availability Group Cluster with version 2022-cu12
. Then, in the next section we will set up autoscaling for this database using MSSQLServerAutoscaler
CRD. Below is the YAML of the MSSQLServer
CR that we are going to create,
apiVersion: kubedb.com/v1alpha2
kind: MSSQLServer
metadata:
name: mssqlserver-ag-cluster
namespace: demo
spec:
version: "2022-cu12"
replicas: 3
topology:
mode: AvailabilityGroup
availabilityGroup:
databases:
- agdb1
- agdb2
internalAuth:
endpointCert:
issuerRef:
apiGroup: cert-manager.io
name: mssqlserver-ca-issuer
kind: Issuer
tls:
issuerRef:
name: mssqlserver-ca-issuer
kind: Issuer
apiGroup: "cert-manager.io"
clientTLS: false
podTemplate:
spec:
containers:
- name: mssql
resources:
requests:
cpu: "500m"
memory: "1.5Gi"
limits:
cpu: "600m"
memory: "1.6Gi"
storageType: Durable
storage:
storageClassName: "longhorn"
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi
deletionPolicy: WipeOut
Let’s create the MSSQLServer
CRO we have shown above,
$ kubectl create -f https://github.com/kubedb/docs/raw/v2024.11.8-rc.0/docs/examples/mssqlserver/autoscaler/compute/mssqlserver-ag-cluster.yaml
mssqlserver.kubedb.com/mssqlserver-ag-cluster created
Now, wait until mssqlserver-ag-cluster
has status Ready
. i.e,
$ kubectl get mssqlserver -n demo
NAME VERSION STATUS AGE
mssqlserver-ag-cluster 2022-cu12 Ready 8m27s
Let’s check the MSSQLServer resources,
$ kubectl get ms -n demo mssqlserver-ag-cluster -o json | jq '.spec.podTemplate.spec.containers[] | select(.name == "mssql") | .resources'
{
"limits": {
"cpu": "600m",
"memory": "1717986918400m"
},
"requests": {
"cpu": "500m",
"memory": "1536Mi"
}
}
Let’s check the Pod containers resources, there are two containers here, first one with index 0 named mssql
is the main container of mssqlserver.
$ kubectl get pod -n demo mssqlserver-ag-cluster-0 -o json | jq '.spec.containers[0].resources'
{
"limits": {
"cpu": "600m",
"memory": "1717986918400m"
},
"requests": {
"cpu": "500m",
"memory": "1536Mi"
}
}
$ kubectl get pod -n demo mssqlserver-ag-cluster-1 -o json | jq '.spec.containers[0].resources'
{
"limits": {
"cpu": "600m",
"memory": "1717986918400m"
},
"requests": {
"cpu": "500m",
"memory": "1536Mi"
}
}
$ kubectl get pod -n demo mssqlserver-ag-cluster-2 -o json | jq '.spec.containers[0].resources'
{
"limits": {
"cpu": "600m",
"memory": "1717986918400m"
},
"requests": {
"cpu": "500m",
"memory": "1536Mi"
}
}
You can see from the above outputs that the resources are same as the one we have assigned while deploying the mssqlserver.
We are now ready to apply the MSSQLServerAutoscaler
CRO to set up autoscaling for this database.
Compute Resource Autoscaling
Here, we are going to set up compute resource autoscaling using a MSSQLServerAutoscaler
Object.
Create MSSQLServerAutoscaler Object
In order to set up compute resource autoscaling for this database cluster, we have to create a MSSQLServerAutoscaler
CRO with our desired configuration. Below is the YAML of the MSSQLServerAutoscaler
object that we are going to create,
apiVersion: autoscaling.kubedb.com/v1alpha1
kind: MSSQLServerAutoscaler
metadata:
name: ms-as-compute
namespace: demo
spec:
databaseRef:
name: mssqlserver-ag-cluster
opsRequestOptions:
timeout: 5m
apply: IfReady
compute:
mssqlserver:
trigger: "On"
podLifeTimeThreshold: 5m
resourceDiffPercentage: 10
minAllowed:
cpu: 800m
memory: 2Gi
maxAllowed:
cpu: 1
memory: 3Gi
containerControlledValues: "RequestsAndLimits"
controlledResources: ["cpu", "memory"]
Here,
spec.databaseRef.name
specifies that we are performing compute resource scaling operation onmssqlserver-ag-cluster
database.spec.compute.mssqlserver.trigger
specifies that compute autoscaling is enabled for this database.spec.compute.mssqlserver.podLifeTimeThreshold
specifies the minimum lifetime for at least one of the pod to initiate a vertical scaling.spec.compute.mssqlserver.resourceDiffPercentage
specifies the minimum resource difference in percentage. The default is 10%. If the difference between current & recommended resource is less than ResourceDiffPercentage, Autoscaler Operator will ignore the updating.spec.compute.mssqlserver.minAllowed
specifies the minimum allowed resources for the database.spec.compute.mssqlserver.maxAllowed
specifies the maximum allowed resources for the database.spec.compute.mssqlserver.controlledResources
specifies the resources that are controlled by the autoscaler.spec.compute.mssqlserver.containerControlledValues
specifies which resource values should be controlled. The default is “RequestsAndLimits”.spec.opsRequestOptions.apply
has two supported value :IfReady
&Always
. UseIfReady
if you want to process the opsReq only when the database is Ready. And useAlways
if you want to process the execution of opsReq irrespective of the Database state.spec.opsRequestOptions.timeout
specifies the maximum time for each step of the opsRequest(in seconds). If a step doesn’t finish within the specified timeout, the ops request will result in failure.
Let’s create the MSSQLServerAutoscaler
CR we have shown above,
$ kubectl apply -f https://github.com/kubedb/docs/raw/v2024.11.8-rc.0/docs/examples/mssqlserver/autoscaler/compute/ms-as-compute.yaml
mssqlserverautoscaler.autoscaling.kubedb.com/ms-as-compute created
Verify Autoscaling is set up successfully
Let’s check that the mssqlserverautoscaler
resource is created successfully,
$ kubectl get mssqlserverautoscaler -n demo
NAME AGE
ms-as-compute 16s
$ kubectl describe mssqlserverautoscaler ms-as-compute -n demo
Name: ms-as-compute
Namespace: demo
Labels: <none>
Annotations: <none>
API Version: autoscaling.kubedb.com/v1alpha1
Kind: MSSQLServerAutoscaler
Metadata:
Creation Timestamp: 2024-10-25T15:02:58Z
Generation: 1
Resource Version: 106200
UID: cc34737b-2e42-4b94-bcc4-cfcac98eb6a6
Spec:
Compute:
Mssqlserver:
Container Controlled Values: RequestsAndLimits
Controlled Resources:
cpu
memory
Max Allowed:
Cpu: 1
Memory: 3Gi
Min Allowed:
Cpu: 800m
Memory: 2Gi
Pod Life Time Threshold: 5m
Resource Diff Percentage: 10
Trigger: On
Database Ref:
Name: mssqlserver-ag-cluster
Ops Request Options:
Apply: IfReady
Timeout: 5m
Status:
Checkpoints:
Cpu Histogram:
Bucket Weights:
Index: 0
Weight: 524
Index: 20
Weight: 456
Index: 28
Weight: 2635
Index: 34
Weight: 455
Index: 35
Weight: 10000
Index: 36
Weight: 6980
Reference Timestamp: 2024-10-25T15:10:00Z
Total Weight: 2.465794209092962
First Sample Start: 2024-10-25T15:03:11Z
Last Sample Start: 2024-10-25T15:13:21Z
Last Update Time: 2024-10-25T15:13:34Z
Memory Histogram:
Bucket Weights:
Index: 36
Weight: 10000
Index: 37
Weight: 5023
Index: 39
Weight: 5710
Index: 40
Weight: 2918
Reference Timestamp: 2024-10-25T15:15:00Z
Total Weight: 2.8324869288693995
Ref:
Container Name: mssql
Vpa Object Name: mssqlserver-ag-cluster
Total Samples Count: 30
Version: v3
Cpu Histogram:
Bucket Weights:
Index: 0
Weight: 10000
Index: 1
Weight: 3741
Index: 2
Weight: 1924
Reference Timestamp: 2024-10-25T15:10:00Z
Total Weight: 2.033798492571757
First Sample Start: 2024-10-25T15:03:11Z
Last Sample Start: 2024-10-25T15:12:22Z
Last Update Time: 2024-10-25T15:12:34Z
Memory Histogram:
Bucket Weights:
Index: 3
Weight: 1357
Index: 4
Weight: 10000
Reference Timestamp: 2024-10-25T15:15:00Z
Total Weight: 2.8324869288693995
Ref:
Container Name: mssql-coordinator
Vpa Object Name: mssqlserver-ag-cluster
Total Samples Count: 26
Version: v3
Conditions:
Last Transition Time: 2024-10-25T15:10:27Z
Message: Successfully created MSSQLServerOpsRequest demo/msops-mssqlserver-ag-cluster-v5xep9
Observed Generation: 1
Reason: CreateOpsRequest
Status: True
Type: CreateOpsRequest
Vpas:
Conditions:
Last Transition Time: 2024-10-25T15:03:34Z
Status: True
Type: RecommendationProvided
Recommendation:
Container Recommendations:
Container Name: mssql
Lower Bound:
Cpu: 844m
Memory: 2Gi
Target:
Cpu: 1
Memory: 2Gi
Uncapped Target:
Cpu: 1168m
Memory: 1389197403
Upper Bound:
Cpu: 1
Memory: 3Gi
Container Name: mssql-coordinator
Lower Bound:
Cpu: 50m
Memory: 131072k
Target:
Cpu: 50m
Memory: 131072k
Uncapped Target:
Cpu: 50m
Memory: 131072k
Upper Bound:
Cpu: 4992m
Memory: 9063982612
Vpa Name: mssqlserver-ag-cluster
Events: <none>
So, the mssqlserverautoscaler
resource is created successfully.
We can verify from the above output that status.vpas
contains the RecommendationProvided
condition to true. And in the same time, status.vpas.recommendation.containerRecommendations
contain the actual generated recommendation.
Our autoscaler operator continuously watches the recommendation generated and creates an mssqlserveropsrequest
based on the recommendations, if the database pod resources are needed to scaled up or down.
Let’s watch the mssqlserveropsrequest
in the demo namespace to see if any mssqlserveropsrequest
object is created. After some time you’ll see that a mssqlserveropsrequest
will be created based on the recommendation.
$ kubectl get mssqlserveropsrequest -n demo
NAME TYPE STATUS AGE
msops-mssqlserver-ag-cluster-6xc1kc VerticalScaling Progressing 7s
Let’s wait for the ops request to become successful.
$ kubectl get mssqlserveropsrequest -n demo
NAME TYPE STATUS AGE
msops-mssqlserver-ag-cluster-8li26q VerticalScaling Successful 11m
We can see from the above output that the MSSQLServerOpsRequest
has succeeded. If we describe the MSSQLServerOpsRequest
we will get an overview of the steps that were followed to scale the database.
$ kubectl describe msops -n demo msops-mssqlserver-ag-cluster-8li26q
Name: msops-mssqlserver-ag-cluster-8li26q
Namespace: demo
Labels: app.kubernetes.io/component=database
app.kubernetes.io/instance=mssqlserver-ag-cluster
app.kubernetes.io/managed-by=kubedb.com
app.kubernetes.io/name=mssqlservers.kubedb.com
Annotations: <none>
API Version: ops.kubedb.com/v1alpha1
Kind: MSSQLServerOpsRequest
Metadata:
Creation Timestamp: 2024-10-25T15:04:27Z
Generation: 1
Owner References:
API Version: autoscaling.kubedb.com/v1alpha1
Block Owner Deletion: true
Controller: true
Kind: MSSQLServerAutoscaler
Name: ms-as-compute
UID: cc34737b-2e42-4b94-bcc4-cfcac98eb6a6
Resource Version: 105300
UID: b2f29a6a-f4cf-4c97-871c-f203e08af320
Spec:
Apply: IfReady
Database Ref:
Name: mssqlserver-ag-cluster
Timeout: 5m0s
Type: VerticalScaling
Vertical Scaling:
Mssqlserver:
Resources:
Limits:
Cpu: 960m
Memory: 2290649225
Requests:
Cpu: 800m
Memory: 2Gi
Status:
Conditions:
Last Transition Time: 2024-10-25T15:04:27Z
Message: MSSQLServer ops-request has started to vertically scaling the MSSQLServer nodes
Observed Generation: 1
Reason: VerticalScaling
Status: True
Type: VerticalScaling
Last Transition Time: 2024-10-25T15:04:30Z
Message: Successfully paused database
Observed Generation: 1
Reason: DatabasePauseSucceeded
Status: True
Type: DatabasePauseSucceeded
Last Transition Time: 2024-10-25T15:04:30Z
Message: Successfully updated PetSets Resources
Observed Generation: 1
Reason: UpdatePetSets
Status: True
Type: UpdatePetSets
Last Transition Time: 2024-10-25T15:04:35Z
Message: get pod; ConditionStatus:True; PodName:mssqlserver-ag-cluster-0
Observed Generation: 1
Status: True
Type: GetPod--mssqlserver-ag-cluster-0
Last Transition Time: 2024-10-25T15:04:35Z
Message: evict pod; ConditionStatus:True; PodName:mssqlserver-ag-cluster-0
Observed Generation: 1
Status: True
Type: EvictPod--mssqlserver-ag-cluster-0
Last Transition Time: 2024-10-25T15:05:15Z
Message: check pod running; ConditionStatus:True; PodName:mssqlserver-ag-cluster-0
Observed Generation: 1
Status: True
Type: CheckPodRunning--mssqlserver-ag-cluster-0
Last Transition Time: 2024-10-25T15:05:20Z
Message: get pod; ConditionStatus:True; PodName:mssqlserver-ag-cluster-1
Observed Generation: 1
Status: True
Type: GetPod--mssqlserver-ag-cluster-1
Last Transition Time: 2024-10-25T15:05:20Z
Message: evict pod; ConditionStatus:True; PodName:mssqlserver-ag-cluster-1
Observed Generation: 1
Status: True
Type: EvictPod--mssqlserver-ag-cluster-1
Last Transition Time: 2024-10-25T15:05:55Z
Message: check pod running; ConditionStatus:True; PodName:mssqlserver-ag-cluster-1
Observed Generation: 1
Status: True
Type: CheckPodRunning--mssqlserver-ag-cluster-1
Last Transition Time: 2024-10-25T15:06:00Z
Message: get pod; ConditionStatus:True; PodName:mssqlserver-ag-cluster-2
Observed Generation: 1
Status: True
Type: GetPod--mssqlserver-ag-cluster-2
Last Transition Time: 2024-10-25T15:06:00Z
Message: evict pod; ConditionStatus:True; PodName:mssqlserver-ag-cluster-2
Observed Generation: 1
Status: True
Type: EvictPod--mssqlserver-ag-cluster-2
Last Transition Time: 2024-10-25T15:06:35Z
Message: check pod running; ConditionStatus:True; PodName:mssqlserver-ag-cluster-2
Observed Generation: 1
Status: True
Type: CheckPodRunning--mssqlserver-ag-cluster-2
Last Transition Time: 2024-10-25T15:06:40Z
Message: Successfully Restarted Pods With Resources
Observed Generation: 1
Reason: RestartPods
Status: True
Type: RestartPods
Last Transition Time: 2024-10-25T15:06:40Z
Message: Successfully completed the VerticalScaling for MSSQLServer
Observed Generation: 1
Reason: Successful
Status: True
Type: Successful
Observed Generation: 1
Phase: Successful
Now, we are going to verify from the Pod, and the MSSQLServer yaml whether the resources of the cluster database has updated to meet up the desired state, Let’s check,
$ kubectl get pod -n demo mssqlserver-ag-cluster-0 -o json | jq '.spec.containers[0].resources'
{
"limits": {
"cpu": "960m",
"memory": "2290649225"
},
"requests": {
"cpu": "800m",
"memory": "2Gi"
}
}
$ kubectl get ms -n demo mssqlserver-ag-cluster -o json | jq '.spec.podTemplate.spec.containers[] | select(.name == "mssql") | .resources'
{
"limits": {
"cpu": "960m",
"memory": "2290649225"
},
"requests": {
"cpu": "800m",
"memory": "2Gi"
}
}
The above output verifies that we have successfully autoscaled the resources of the MSSQLServer cluster.
Autoscaling for Standalone MSSQLServer
Autoscaling for Standalone MSSQLServer is exactly same as cluster mode. Just refer the standalone mssqlserver in databaseRef
field of MSSQLServerAutoscaler
spec.
Cleaning Up
To clean up the Kubernetes resources created by this tutorial, run:
kubectl delete mssqlserver -n demo mssqlserver-ag-cluster
kubectl delete mssqlserverautoscaler -n demo ms-as-compute
kubectl delete issuer -n demo mssqlserver-ca-issuer
kubectl delete secret -n demo mssqlserver-ca
kubectl delete ns demo