New to KubeDB? Please start here.
Autoscaling the Compute Resource of a Redis Database
This guide will show you how to use KubeDB
to autoscale compute resources i.e. cpu and memory of a Redis standalone database.
Before You Begin
At first, you need to have a Kubernetes cluster, and the
kubectl
command-line tool must be configured to communicate with your cluster.Install
KubeDB
Provisioner, Ops-manager and Autoscaler operator in your cluster following the steps here.Install
Metrics Server
from hereYou should be familiar with the following
KubeDB
concepts:
To keep everything isolated, we are going to use a separate namespace called demo
throughout this tutorial.
$ kubectl create ns demo
namespace/demo created
Note: YAML files used in this tutorial are stored in docs/examples/redis directory of kubedb/docs repository.
Autoscaling of Standalone Database
Here, we are going to deploy a Redis
standalone using a supported version by KubeDB
operator. Then we are going to apply RedisAutoscaler
to set up autoscaling.
Deploy Redis standalone
In this section, we are going to deploy a Redis standalone database with version 6.2.14
. Then, in the next section we will set up autoscaling for this database using RedisAutoscaler
CRD. Below is the YAML of the Redis
CR that we are going to create,
If you want to autoscale Redis in
Cluster
orSentinel
mode, just deploy a Redis database in respective Mode and rest of the steps are same.
apiVersion: kubedb.com/v1
kind: Redis
metadata:
name: rd-standalone
namespace: demo
spec:
version: "6.2.14"
storageType: Durable
storage:
resources:
requests:
storage: 1Gi
podTemplate:
spec:
containers:
- name: redis
resources:
requests:
cpu: "200m"
memory: "300Mi"
limits:
cpu: "200m"
memory: "300Mi"
deletionPolicy: WipeOut
Let’s create the Redis
CRO we have shown above,
$ kubectl create -f https://github.com/kubedb/docs/raw/v2024.12.18/docs/examples/redis/autoscaling/compute/rd-standalone.yaml
redis.kubedb.com/rd-standalone created
Now, wait until rd-standalone
has status Ready
. i.e,
$ kubectl get rd -n demo
NAME VERSION STATUS AGE
rd-standalone 6.2.14 Ready 2m53s
Let’s check the Pod containers resources,
$ kubectl get pod -n demo rd-standalone-0 -o json | jq '.spec.containers[].resources'
{
"limits": {
"cpu": "200m",
"memory": "300Mi"
},
"requests": {
"cpu": "200m",
"memory": "300Mi"
}
}
Let’s check the Redis resources,
$ kubectl get redis -n demo rd-standalone -o json | jq '.spec.podTemplate.spec.containers[] | select(.name == "redis") | .resources'
{
"limits": {
"cpu": "200m",
"memory": "300Mi"
},
"requests": {
"cpu": "200m",
"memory": "300Mi"
}
}
You can see from the above outputs that the resources are same as the one we have assigned while deploying the redis.
We are now ready to apply the RedisAutoscaler
CRO to set up autoscaling for this database.
Compute Resource Autoscaling
Here, we are going to set up compute (cpu and memory) autoscaling using a RedisAutoscaler Object.
Create RedisAutoscaler Object
In order to set up compute resource autoscaling for this standalone database, we have to create a RedisAutoscaler
CRO with our desired configuration. Below is the YAML of the RedisAutoscaler
object that we are going to create,
apiVersion: autoscaling.kubedb.com/v1alpha1
kind: RedisAutoscaler
metadata:
name: rd-as
namespace: demo
spec:
databaseRef:
name: rd-standalone
opsRequestOptions:
timeout: 3m
apply: IfReady
compute:
standalone:
trigger: "On"
podLifeTimeThreshold: 5m
resourceDiffPercentage: 20
minAllowed:
cpu: 400m
memory: 400Mi
maxAllowed:
cpu: 1
memory: 1Gi
controlledResources: ["cpu", "memory"]
containerControlledValues: "RequestsAndLimits"
If you want to autoscale Redis in Cluster mode, the field in
spec.compute
should becluster
and for sentinel it should besentinel
. The subfields are same insidespec.computer.standalone
,spec.compute.cluster
andspec.compute.sentinel
Here,
spec.databaseRef.name
specifies that we are performing compute resource autoscaling onrd-standalone
database.spec.compute.standalone.trigger
specifies that compute resource autoscaling is enabled for this database.spec.compute.standalone.podLifeTimeThreshold
specifies the minimum lifetime for at least one of the pod to initiate a vertical scaling.spec.compute.standalone.resourceDiffPercentage
specifies the minimum resource difference in percentage. The default is 10%. If the difference between current & recommended resource is less than ResourceDiffPercentage, Autoscaler Operator will ignore the updating.spec.compute.standalone.minAllowed
specifies the minimum allowed resources for the database.spec.compute.standalone.maxAllowed
specifies the maximum allowed resources for the database.spec.compute.standalone.controlledResources
specifies the resources that are controlled by the autoscaler.spec.compute.standalone.containerControlledValues
specifies which resource values should be controlled. The default is “RequestsAndLimits”.spec.opsRequestOptions
contains the options to pass to the created OpsRequest. It has 2 fields. Know more about them here : timeout, apply.
Let’s create the RedisAutoscaler
CR we have shown above,
$ kubectl apply -f https://github.com/kubedb/docs/raw/v2024.12.18/docs/examples/redis/autoscaling/compute/rd-as-standalone.yaml
redisautoscaler.autoscaling.kubedb.com/rd-as created
Verify Autoscaling is set up successfully
Let’s check that the redisautoscaler
resource is created successfully,
$ kubectl get redisautoscaler -n demo
NAME AGE
rd-as 102s
$ kubectl describe redisautoscaler rd-as -n demo
Name: rd-as
Namespace: demo
Labels: <none>
Annotations: <none>
API Version: autoscaling.kubedb.com/v1alpha1
Kind: RedisAutoscaler
Metadata:
Creation Timestamp: 2023-02-09T10:02:26Z
Generation: 1
Managed Fields:
API Version: autoscaling.kubedb.com/v1alpha1
Fields Type: FieldsV1
fieldsV1:
f:metadata:
f:annotations:
.:
f:kubectl.kubernetes.io/last-applied-configuration:
f:spec:
.:
f:compute:
.:
f:standalone:
.:
f:containerControlledValues:
f:controlledResources:
f:maxAllowed:
.:
f:cpu:
f:memory:
f:minAllowed:
.:
f:cpu:
f:memory:
f:podLifeTimeThreshold:
f:resourceDiffPercentage:
f:trigger:
f:databaseRef:
f:opsRequestOptions:
.:
f:apply:
f:timeout:
Manager: kubectl-client-side-apply
Operation: Update
Time: 2023-02-09T10:02:26Z
API Version: autoscaling.kubedb.com/v1alpha1
Fields Type: FieldsV1
fieldsV1:
f:status:
.:
f:checkpoints:
f:vpas:
Manager: kubedb-autoscaler
Operation: Update
Subresource: status
Time: 2023-02-09T10:02:29Z
Resource Version: 839366
UID: 5a5dedc1-fbef-4afa-93f3-0ca8dfb8a30b
Spec:
Compute:
Standalone:
Container Controlled Values: RequestsAndLimits
Controlled Resources:
cpu
memory
Max Allowed:
Cpu: 1
Memory: 1Gi
Min Allowed:
Cpu: 400m
Memory: 400Mi
Pod Life Time Threshold: 5m0s
Resource Diff Percentage: 20
Trigger: On
Database Ref:
Name: rd-standalone
Ops Request Options:
Apply: IfReady
Timeout: 3m0s
Status:
Checkpoints:
Cpu Histogram:
Last Update Time: 2023-02-09T10:03:29Z
Memory Histogram:
Ref:
Container Name: redis
Vpa Object Name: rd-standalone
Version: v3
Vpas:
Conditions:
Last Transition Time: 2023-02-09T10:02:29Z
Status: False
Type: RecommendationProvided
Recommendation:
Vpa Name: rd-standalone
Events: <none>
So, the redisautoscaler
resource is created successfully.
you can see in the Status.VPAs.Recommendation
section, that recommendation has been generated for our database. Our autoscaler operator continuously watches the recommendation generated and creates an redisopsrequest
based on the recommendations, if the database pods are needed to scaled up or down.
Let’s watch the redisopsrequest
in the demo namespace to see if any redisopsrequest
object is created. After some time you’ll see that a redisopsrequest
will be created based on the recommendation.
$ watch kubectl get redisopsrequest -n demo
Every 2.0s: kubectl get redisopsrequest -n demo
NAME TYPE STATUS AGE
rdops-rd-standalone-q2zozm VerticalScaling Progressing 10s
Let’s wait for the ops request to become successful.
$ watch kubectl get redisopsrequest -n demo
Every 2.0s: kubectl get redisopsrequest -n demo
NAME TYPE STATUS AGE
rdops-rd-standalone-q2zozm VerticalScaling Successful 68s
We can see from the above output that the RedisOpsRequest
has succeeded.
Now, we are going to verify from the Pod, and the Redis yaml whether the resources of the standalone database has updated to meet up the desired state, Let’s check,
$ kubectl get pod -n demo rd-standalone-0 -o json | jq '.spec.containers[].resources'
{
"limits": {
"cpu": "400m",
"memory": "400Mi"
},
"requests": {
"cpu": "400m",
"memory": "400Mi"
}
}
$ kubectl get redis -n demo rd-standalone -o json | jq '.spec.podTemplate.spec.containers[] | select(.name == "redis") | .resources'
{
"limits": {
"cpu": "400m",
"memory": "400Mi"
},
"requests": {
"cpu": "400m",
"memory": "400Mi"
}
}
The above output verifies that we have successfully auto-scaled the resources of the Redis standalone database.
Cleaning Up
To clean up the Kubernetes resources created by this tutorial, run:
$ kubectl patch -n demo rd/rd-standalone -p '{"spec":{"deletionPolicy":"WipeOut"}}' --type="merge"
redis.kubedb.com/rd-standalone patched
$ kubectl delete rd -n demo rd-standalone
redis.kubedb.com "rd-standalone" deleted
$ kubectl delete redisautoscaler -n demo rd-as
redisautoscaler.autoscaling.kubedb.com "rd-as" deleted