You are looking at the documentation of a prior release. To read the documentation of the latest release, please
visit here.
New to KubeDB? Please start here.
Autoscaling the Compute Resource of an Elasticsearch Topology Cluster
This guide will show you how to use KubeDB
to autoscale compute resources i.e. cpu
and memory
of an Elasticsearch topology cluster.
Before You Begin
At first, you need to have a Kubernetes cluster, and the
kubectl
command-line tool must be configured to communicate with your cluster.Install
KubeDB
Community, Enterprise and Autoscaler operator in your cluster following the steps here.Install
Metrics Server
from hereYou should be familiar with the following
KubeDB
concepts:
To keep everything isolated, we are going to use a separate namespace called demo
throughout this tutorial.
$ kubectl create ns demo
namespace/demo created
Note: YAML files used in this tutorial are stored in this directory of kubedb/docs repository.
Autoscaling of Topology Cluster
Here, we are going to deploy an Elasticsearch
topology cluster using a supported version by KubeDB
operator. Then we are going to apply ElasticsearchAutoscaler
to set up autoscaling.
Deploy Elasticsearch Topology Cluster
In this section, we are going to deploy an Elasticsearch topology with ElasticsearchVersion opensearch-2.8.0
. Then, in the next section we will set up autoscaling for this database using ElasticsearchAutoscaler
CRD. Below is the YAML of the Elasticsearch
CR that we are going to create,
apiVersion: kubedb.com/v1alpha2
kind: Elasticsearch
metadata:
name: es-topology
namespace: demo
spec:
enableSSL: true
version: opensearch-2.8.0
storageType: Durable
topology:
master:
suffix: master
replicas: 1
storage:
storageClassName: "standard"
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi
data:
suffix: data
replicas: 2
storage:
storageClassName: "standard"
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi
ingest:
suffix: ingest
replicas: 1
storage:
storageClassName: "standard"
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi
terminationPolicy: WipeOut
Let’s create the Elasticsearch
CRO we have shown above,
$ kubectl create -f https://github.com/kubedb/docs/raw/v2024.2.14/docs/guides/elasticsearch/autoscaler/computetopology/yamls/es-topology.yaml
elasticsearch.kubedb.com/es-topology created
Now, wait until es-topology
has status Ready
. i.e,
$ kubectl get elasticsearch -n demo -w
NAME VERSION STATUS AGE
es-topology opensearch-2.8.0 Provisioning 113s
es-topology opensearch-2.8.0 Ready 115s
Let’s check an ingest node containers resources,
$ kubectl get pod -n demo es-topology-ingest-0 -o json | jq '.spec.containers[].resources'
{
"limits": {
"cpu": "500m",
"memory": "1Gi"
},
"requests": {
"cpu": "500m",
"memory": "1Gi"
}
}
Let’s check the Elasticsearch CR for the ingest node resources,
$ kubectl get elasticsearch -n demo es-topology -o json | jq '.spec.topology.ingest.resources'
{
"limits": {
"cpu": "500m",
"memory": "1Gi"
},
"requests": {
"cpu": "500m",
"memory": "1Gi"
}
You can see from the above outputs that the resources are the same as the ones we have assigned while deploying the Elasticsearch.
We are now ready to apply the ElasticsearchAutoscaler
CRO to set up autoscaling for this database.
Compute Resource Autoscaling
Here, we are going to set up compute resource autoscaling using a ElasticsearchAutoscaler Object.
Create ElasticsearchAutoscaler Object
In order to set up compute resource autoscaling for the ingest nodes of the cluster, we have to create a ElasticsearchAutoscaler
CRO with our desired configuration. Below is the YAML of the ElasticsearchAutoscaler
object that we are going to create,
apiVersion: autoscaling.kubedb.com/v1alpha1
kind: ElasticsearchAutoscaler
metadata:
name: es-topology-as
namespace: demo
spec:
databaseRef:
name: es-topology
compute:
ingest:
trigger: "On"
podLifeTimeThreshold: 5m
minAllowed:
cpu: ".4"
memory: 500Mi
maxAllowed:
cpu: 2
memory: 3Gi
controlledResources: ["cpu", "memory"]
Here,
spec.databaseRef.name
specifies that we are performing compute resource scaling operation ones-topology
cluster.spec.compute.topology.ingest.trigger
specifies that compute autoscaling is enabled for the ingest nodes.spec.compute.topology.ingest.podLifeTimeThreshold
specifies the minimum lifetime for at least one of the pod to initiate a vertical scaling.spec.compute.topology.ingest.minAllowed
specifies the minimum allowed resources for the ingest nodes.spec.compute.topology.ingest.maxAllowed
specifies the maximum allowed resources for the ingest nodes.spec.compute.topology.ingest.controlledResources
specifies the resources that are controlled by the autoscaler.
Note: In this demo, we are only setting up the autoscaling for the ingest nodes, that’s why we only specified the ingest section of the autoscaler. You can enable autoscaling for the master and the data nodes in the same YAML, by specifying the
topology.master
andtopology.data
section, similar to thetopology.ingest
section we have configured in this demo.
Let’s create the ElasticsearchAutoscaler
CR we have shown above,
$ kubectl apply -f https://github.com/kubedb/docs/raw/v2024.2.14/docs/guides/elasticsearch/autoscaler/computetopology/yamls/es-topology-auto-scaler.yaml
elasticsearchautoscaler.autoscaling.kubedb.com/es-topology-as created
Verify Autoscaling is set up successfully
Let’s check that the elasticsearchautoscaler
resource is created successfully,
$ kubectl get elasticsearchautoscaler -n demo
NAME AGE
es-topology-as 9s
$ kubectl describe elasticsearchautoscaler -n demo es-topology-as
Name: es-topology-as
Namespace: demo
Labels: <none>
Annotations: <none>
API Version: autoscaling.kubedb.com/v1alpha1
Kind: ElasticsearchAutoscaler
Metadata:
Creation Timestamp: 2021-03-22T13:03:55Z
Generation: 1
Resource Version: 18219
UID: c1855d8e-6430-48bb-87d7-9c7bc9ce6f42
Spec:
Compute:
Topology:
Ingest:
Controlled Resources:
cpu
memory
Max Allowed:
Cpu: 2
Memory: 3Gi
Min Allowed:
Cpu: 400m
Memory: 500Mi
Pod Life Time Threshold: 5m0s
Trigger: On
Database Ref:
Name: es-topology
Events: <none>
So, the elasticsearchautoscaler
resource is created successfully.
Now, lets verify that the vertical pod autoscaler (vpa) resource is created successfully,
$ kubectl get vpa -n demo
NAME MODE CPU MEM PROVIDED AGE
vpa-es-topology-ingest Off 400m 1102117711 True 30s
$ kubectl describe vpa -n demo vpa-es-topology-ingest
Name: vpa-es-topology-ingest
Namespace: demo
Labels: <none>
Annotations: <none>
API Version: autoscaling.k8s.io/v1
Kind: VerticalPodAutoscaler
Metadata:
Creation Timestamp: 2021-03-22T13:03:55Z
Generation: 2
Owner References:
API Version: autoscaling.kubedb.com/v1alpha1
Block Owner Deletion: true
Controller: true
Kind: ElasticsearchAutoscaler
Name: es-topology-as
UID: c1855d8e-6430-48bb-87d7-9c7bc9ce6f42
Resource Version: 18253
UID: 1d32c133-7214-49bd-bf3b-aa4a99986058
Spec:
Resource Policy:
Container Policies:
Container Name: elasticsearch
Controlled Resources:
cpu
memory
Controlled Values: RequestsAndLimits
Max Allowed:
Cpu: 2
Memory: 3Gi
Min Allowed:
Cpu: 400m
Memory: 500Mi
Target Ref:
API Version: apps/v1
Kind: StatefulSet
Name: es-topology-ingest
Update Policy:
Update Mode: Off
Status:
Conditions:
Last Transition Time: 2021-03-22T13:04:12Z
Status: True
Type: RecommendationProvided
Recommendation:
Container Recommendations:
Container Name: elasticsearch
Lower Bound:
Cpu: 400m
Memory: 1054147415
Target:
Cpu: 400m
Memory: 1102117711
Uncapped Target:
Cpu: 224m
Memory: 1102117711
Upper Bound:
Cpu: 2
Memory: 3Gi
Events: <none>
As you can see from the output the vpa has generated a recommendation for the ingest node of the Elasticsearch cluster. Our autoscaler operator continuously watches the recommendation generated and creates an elasticsearchopsrequest
based on the recommendations, if the Elasticsearch nodes are needed to be scaled up or down.
Let’s watch the elasticsearchopsrequest
in the demo namespace to see if any elasticsearchopsrequest
object is created. After some time you’ll see that an elasticsearchopsrequest
will be created based on the recommendation.
$ kubectl get elasticsearchopsrequest -n demo
NAME TYPE STATUS AGE
esops-vpa-es-topology-ingest-37m2wi VerticalScaling Progressing 44s
Let’s wait for the opsRequest to become successful.
$ kubectl get elasticsearchopsrequest -n demo -w
NAME TYPE STATUS AGE
esops-vpa-es-topology-ingest-37m2wi VerticalScaling Progressing 8m2s
esops-vpa-es-topology-ingest-37m2wi VerticalScaling Successful 9m20s
We can see from the above output that the ElasticsearchOpsRequest
has succeeded. If we describe the ElasticsearchOpsRequest
we will get an overview of the steps that were followed to scale the database.
$ Name: esops-vpa-es-topology-ingest-37m2wi
Namespace: demo
Labels: app.kubernetes.io/component=database
app.kubernetes.io/instance=es-topology
app.kubernetes.io/managed-by=kubedb.com
app.kubernetes.io/name=elasticsearches.kubedb.com
Annotations: <none>
API Version: ops.kubedb.com/v1alpha1
Kind: ElasticsearchOpsRequest
Metadata:
Creation Timestamp: 2021-03-22T13:04:21Z
Generation: 1
Owner References:
API Version: autoscaling.kubedb.com/v1alpha1
Block Owner Deletion: true
Controller: true
Kind: ElasticsearchAutoscaler
Name: es-topology-as
UID: c1855d8e-6430-48bb-87d7-9c7bc9ce6f42
Resource Version: 19553
UID: aed024b7-3779-416c-86c4-43120bba7bd3
Spec:
Database Ref:
Name: es-topology
Type: VerticalScaling
Vertical Scaling:
Topology:
Ingest:
Limits:
Cpu: 400m
Memory: 1102117711
Requests:
Cpu: 400m
Memory: 1102117711
Status:
Conditions:
Last Transition Time: 2021-03-22T13:04:21Z
Message: Elasticsearch ops request is vertically scaling the nodes
Observed Generation: 1
Reason: VerticalScaling
Status: True
Type: VerticalScaling
Last Transition Time: 2021-03-22T13:04:21Z
Message: Successfully updated statefulSet resources.
Observed Generation: 1
Reason: UpdateStatefulSetResources
Status: True
Type: UpdateStatefulSetResources
Last Transition Time: 2021-03-22T13:13:41Z
Message: Successfully updated all node resources
Observed Generation: 1
Reason: UpdateNodeResources
Status: True
Type: UpdateNodeResources
Last Transition Time: 2021-03-22T13:13:41Z
Message: Successfully completed the modification process.
Observed Generation: 1
Reason: Successful
Status: True
Type: Successful
Observed Generation: 1
Phase: Successful
Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Normal PauseDatabase 10m KubeDB Enterprise Operator Pausing Elasticsearch demo/es-topology
Normal Updating 10m KubeDB Enterprise Operator Updating StatefulSets
Normal Updating 10m KubeDB Enterprise Operator Successfully Updated StatefulSets
Normal UpdateNodeResources 56s KubeDB Enterprise Operator Successfully updated all node resources
Normal Updating 56s KubeDB Enterprise Operator Updating Elasticsearch
Normal Updating 56s KubeDB Enterprise Operator Successfully Updated Elasticsearch
Normal ResumeDatabase 56s KubeDB Enterprise Operator Resuming Elasticsearch demo/es-topology
Normal Successful 56s KubeDB Enterprise Operator Successfully Updated Database
Now, we are going to verify from the Pod, and the Elasticsearch YAML whether the resources of the ingest node of the cluster has updated to meet up the desired state, Let’s check,
$ kubectl get pod -n demo es-topology-ingest-0 -o json | jq '.spec.containers[].resources'
{
"limits": {
"cpu": "400m",
"memory": "1102117711"
},
"requests": {
"cpu": "400m",
"memory": "1102117711"
}
}
$ kubectl get elasticsearch -n demo es-topology -o json | jq '.spec.topology.ingest.resources'
{
"limits": {
"cpu": "400m",
"memory": "1102117711"
},
"requests": {
"cpu": "400m",
"memory": "1102117711"
}
}
The above output verifies that we have successfully auto-scaled the resources of the Elasticsearch topology cluster.
Cleaning Up
To clean up the Kubernetes resources created by this tutorial, run:
$ kubectl delete elasticsearch -n demo es-topology
$ kubectl delete elasticsearchautoscaler -n demo es-topology-as
$ kubectl delete ns demo