You are looking at the documentation of a prior release. To read the documentation of the latest release, please visit here.

New to KubeDB? Please start here.

Autoscaling the Compute Resource of a Redis Database

This guide will show you how to use KubeDB to autoscale compute resources i.e. cpu and memory of a Redis standalone database.

Before You Begin

  • At first, you need to have a Kubernetes cluster, and the kubectl command-line tool must be configured to communicate with your cluster.

  • Install KubeDB Provisioner, Ops-manager and Autoscaler operator in your cluster following the steps here.

  • Install Metrics Server from here

  • You should be familiar with the following KubeDB concepts:

To keep everything isolated, we are going to use a separate namespace called demo throughout this tutorial.

$ kubectl create ns demo
namespace/demo created

Note: YAML files used in this tutorial are stored in docs/examples/redis directory of kubedb/docs repository.

Autoscaling of Standalone Database

Here, we are going to deploy a Redis standalone using a supported version by KubeDB operator. Then we are going to apply RedisAutoscaler to set up autoscaling.

Deploy Redis standalone

In this section, we are going to deploy a Redis standalone database with version 6.2.14. Then, in the next section we will set up autoscaling for this database using RedisAutoscaler CRD. Below is the YAML of the Redis CR that we are going to create,

If you want to autoscale Redis in Cluster or Sentinel mode, just deploy a Redis database in respective Mode and rest of the steps are same.

apiVersion: kubedb.com/v1
kind: Redis
metadata:
  name: rd-standalone
  namespace: demo
spec:
  version: "6.2.14"
  storageType: Durable
  storage:
    resources:
      requests:
        storage: 1Gi
  podTemplate:
    spec:
      containers:
      - name: redis
        resources:
          requests:
            cpu: "200m"
            memory: "300Mi"
          limits:
            cpu: "200m"
            memory: "300Mi"
  deletionPolicy: WipeOut

Let’s create the Redis CRO we have shown above,

$ kubectl create -f https://github.com/kubedb/docs/raw/v2024.8.21/docs/examples/redis/autoscaling/compute/rd-standalone.yaml
redis.kubedb.com/rd-standalone created

Now, wait until rd-standalone has status Ready. i.e,

$ kubectl get rd -n demo
NAME            VERSION    STATUS    AGE
rd-standalone   6.2.14      Ready     2m53s

Let’s check the Pod containers resources,

$ kubectl get pod -n demo rd-standalone-0 -o json | jq '.spec.containers[].resources'
{
  "limits": {
    "cpu": "200m",
    "memory": "300Mi"
  },
  "requests": {
    "cpu": "200m",
    "memory": "300Mi"
  }
}

Let’s check the Redis resources,

$ kubectl get redis -n demo rd-standalone -o json | jq '.spec.podTemplate.spec.containers[] | select(.name == "redis") | .resources'
{
  "limits": {
    "cpu": "200m",
    "memory": "300Mi"
  },
  "requests": {
    "cpu": "200m",
    "memory": "300Mi"
  }
}

You can see from the above outputs that the resources are same as the one we have assigned while deploying the redis.

We are now ready to apply the RedisAutoscaler CRO to set up autoscaling for this database.

Compute Resource Autoscaling

Here, we are going to set up compute (cpu and memory) autoscaling using a RedisAutoscaler Object.

Create RedisAutoscaler Object

In order to set up compute resource autoscaling for this standalone database, we have to create a RedisAutoscaler CRO with our desired configuration. Below is the YAML of the RedisAutoscaler object that we are going to create,

apiVersion: autoscaling.kubedb.com/v1alpha1
kind: RedisAutoscaler
metadata:
  name: rd-as
  namespace: demo
spec:
  databaseRef:
    name: rd-standalone
  opsRequestOptions:
    timeout: 3m
    apply: IfReady
  compute:
    standalone:
      trigger: "On"
      podLifeTimeThreshold: 5m
      resourceDiffPercentage: 20
      minAllowed:
        cpu: 400m
        memory: 400Mi
      maxAllowed:
        cpu: 1
        memory: 1Gi
      controlledResources: ["cpu", "memory"]
      containerControlledValues: "RequestsAndLimits"

If you want to autoscale Redis in Cluster mode, the field in spec.compute should be cluster and for sentinel it should be sentinel. The subfields are same inside spec.computer.standalone, spec.compute.cluster and spec.compute.sentinel

Here,

  • spec.databaseRef.name specifies that we are performing compute resource autoscaling on rd-standalone database.
  • spec.compute.standalone.trigger specifies that compute resource autoscaling is enabled for this database.
  • spec.compute.standalone.podLifeTimeThreshold specifies the minimum lifetime for at least one of the pod to initiate a vertical scaling.
  • spec.compute.standalone.resourceDiffPercentage specifies the minimum resource difference in percentage. The default is 10%. If the difference between current & recommended resource is less than ResourceDiffPercentage, Autoscaler Operator will ignore the updating.
  • spec.compute.standalone.minAllowed specifies the minimum allowed resources for the database.
  • spec.compute.standalone.maxAllowed specifies the maximum allowed resources for the database.
  • spec.compute.standalone.controlledResources specifies the resources that are controlled by the autoscaler.
  • spec.compute.standalone.containerControlledValues specifies which resource values should be controlled. The default is “RequestsAndLimits”.
  • spec.opsRequestOptions contains the options to pass to the created OpsRequest. It has 2 fields. Know more about them here : timeout, apply.

Let’s create the RedisAutoscaler CR we have shown above,

$ kubectl apply -f https://github.com/kubedb/docs/raw/v2024.8.21/docs/examples/redis/autoscaling/compute/rd-as-standalone.yaml
redisautoscaler.autoscaling.kubedb.com/rd-as created

Verify Autoscaling is set up successfully

Let’s check that the redisautoscaler resource is created successfully,

$ kubectl get redisautoscaler -n demo
NAME    AGE
rd-as   102s

$ kubectl describe redisautoscaler rd-as -n demo
Name:         rd-as
Namespace:    demo
Labels:       <none>
Annotations:  <none>
API Version:  autoscaling.kubedb.com/v1alpha1
Kind:         RedisAutoscaler
Metadata:
  Creation Timestamp:  2023-02-09T10:02:26Z
  Generation:          1
  Managed Fields:
    API Version:  autoscaling.kubedb.com/v1alpha1
    Fields Type:  FieldsV1
    fieldsV1:
      f:metadata:
        f:annotations:
          .:
          f:kubectl.kubernetes.io/last-applied-configuration:
      f:spec:
        .:
        f:compute:
          .:
          f:standalone:
            .:
            f:containerControlledValues:
            f:controlledResources:
            f:maxAllowed:
              .:
              f:cpu:
              f:memory:
            f:minAllowed:
              .:
              f:cpu:
              f:memory:
            f:podLifeTimeThreshold:
            f:resourceDiffPercentage:
            f:trigger:
        f:databaseRef:
        f:opsRequestOptions:
          .:
          f:apply:
          f:timeout:
    Manager:      kubectl-client-side-apply
    Operation:    Update
    Time:         2023-02-09T10:02:26Z
    API Version:  autoscaling.kubedb.com/v1alpha1
    Fields Type:  FieldsV1
    fieldsV1:
      f:status:
        .:
        f:checkpoints:
        f:vpas:
    Manager:         kubedb-autoscaler
    Operation:       Update
    Subresource:     status
    Time:            2023-02-09T10:02:29Z
  Resource Version:  839366
  UID:               5a5dedc1-fbef-4afa-93f3-0ca8dfb8a30b
Spec:
  Compute:
    Standalone:
      Container Controlled Values:  RequestsAndLimits
      Controlled Resources:
        cpu
        memory
      Max Allowed:
        Cpu:     1
        Memory:  1Gi
      Min Allowed:
        Cpu:                     400m
        Memory:                  400Mi
      Pod Life Time Threshold:   5m0s
      Resource Diff Percentage:  20
      Trigger:                   On
  Database Ref:
    Name:  rd-standalone
  Ops Request Options:
    Apply:    IfReady
    Timeout:  3m0s
Status:
  Checkpoints:
    Cpu Histogram:
    Last Update Time:  2023-02-09T10:03:29Z
    Memory Histogram:
    Ref:
      Container Name:   redis
      Vpa Object Name:  rd-standalone
    Version:            v3
  Vpas:
    Conditions:
      Last Transition Time:  2023-02-09T10:02:29Z
      Status:                False
      Type:                  RecommendationProvided
    Recommendation:
    Vpa Name:  rd-standalone
Events:        <none>

So, the redisautoscaler resource is created successfully.

you can see in the Status.VPAs.Recommendation section, that recommendation has been generated for our database. Our autoscaler operator continuously watches the recommendation generated and creates an redisopsrequest based on the recommendations, if the database pods are needed to scaled up or down.

Let’s watch the redisopsrequest in the demo namespace to see if any redisopsrequest object is created. After some time you’ll see that a redisopsrequest will be created based on the recommendation.

$ watch kubectl get redisopsrequest -n demo
Every 2.0s: kubectl get redisopsrequest -n demo
NAME                         TYPE              STATUS       AGE
rdops-rd-standalone-q2zozm   VerticalScaling   Progressing  10s

Let’s wait for the ops request to become successful.

$ watch kubectl get redisopsrequest -n demo
Every 2.0s: kubectl get redisopsrequest -n demo
NAME                         TYPE              STATUS       AGE
rdops-rd-standalone-q2zozm   VerticalScaling   Successful   68s

We can see from the above output that the RedisOpsRequest has succeeded.

Now, we are going to verify from the Pod, and the Redis yaml whether the resources of the standalone database has updated to meet up the desired state, Let’s check,

$ kubectl get pod -n demo rd-standalone-0 -o json | jq '.spec.containers[].resources'
{
  "limits": {
    "cpu": "400m",
    "memory": "400Mi"
  },
  "requests": {
    "cpu": "400m",
    "memory": "400Mi"
  }
}

$ kubectl get redis -n demo rd-standalone -o json | jq '.spec.podTemplate.spec.containers[] | select(.name == "redis") | .resources'
{
  "limits": {
    "cpu": "400m",
    "memory": "400Mi"
  },
  "requests": {
    "cpu": "400m",
    "memory": "400Mi"
  }
}

The above output verifies that we have successfully auto-scaled the resources of the Redis standalone database.

Cleaning Up

To clean up the Kubernetes resources created by this tutorial, run:

$ kubectl patch -n demo rd/rd-standalone -p '{"spec":{"deletionPolicy":"WipeOut"}}' --type="merge"
redis.kubedb.com/rd-standalone patched

$ kubectl delete rd -n demo rd-standalone
redis.kubedb.com "rd-standalone" deleted

$ kubectl delete redisautoscaler -n demo rd-as
redisautoscaler.autoscaling.kubedb.com "rd-as" deleted