New to KubeDB? Please start here.

Autoscaling the Compute Resource of a Kafka Combined Cluster

This guide will show you how to use KubeDB to autoscale compute resources i.e. cpu and memory of a Kafka combined cluster.

Before You Begin

  • At first, you need to have a Kubernetes cluster, and the kubectl command-line tool must be configured to communicate with your cluster.

  • Install KubeDB Provisioner, Ops-manager and Autoscaler operator in your cluster following the steps here.

  • Install Metrics Server from here

  • You should be familiar with the following KubeDB concepts:

To keep everything isolated, we are going to use a separate namespace called demo throughout this tutorial.

$ kubectl create ns demo
namespace/demo created

Note: YAML files used in this tutorial are stored in docs/examples/kafka directory of kubedb/docs repository.

Autoscaling of Combined Cluster

Here, we are going to deploy a Kafka Combined Cluster using a supported version by KubeDB operator. Then we are going to apply KafkaAutoscaler to set up autoscaling.

Deploy Kafka Combined Cluster

In this section, we are going to deploy a Kafka Topology database with version 3.6.1. Then, in the next section we will set up autoscaling for this database using KafkaAutoscaler CRD. Below is the YAML of the Kafka CR that we are going to create,

apiVersion: kubedb.com/v1
kind: Kafka
metadata:
  name: kafka-dev
  namespace: demo
spec:
  replicas: 2
  version: 3.6.1
  podTemplate:
    spec:
      containers:
        - name: kafka
          resources:
            limits:
              memory: 1Gi
            requests:
              cpu: 500m
              memory: 1Gi
  storage:
    accessModes:
      - ReadWriteOnce
    resources:
      requests:
        storage: 1Gi
    storageClassName: standard
  storageType: Durable
  deletionPolicy: WipeOut

Let’s create the Kafka CRO we have shown above,

$ kubectl create -f https://github.com/kubedb/docs/raw/v2024.9.30/docs/examples/kafka/autoscaler/kafka-combined.yaml
kafka.kubedb.com/kafka-dev created

Now, wait until kafka-dev has status Ready. i.e,

$ kubectl get kf -n demo -w
NAME         TYPE            VERSION   STATUS         AGE
kafka-dev    kubedb.com/v1   3.6.1     Provisioning   0s
kafka-dev    kubedb.com/v1   3.6.1     Provisioning   24s
.
.
kafka-dev    kubedb.com/v1   3.6.1     Ready          92s

Let’s check the Pod containers resources,

$ kubectl get pod -n demo kafka-dev-0 -o json | jq '.spec.containers[].resources'
{
  "limits": {
    "memory": "1Gi"
  },
  "requests": {
    "cpu": "500m",
    "memory": "1Gi"
  }
}

Let’s check the Kafka resources,

$ kubectl get kafka -n demo kafka-dev -o json | jq '.spec.podTemplate.spec.containers[].resources'
{
  "limits": {
    "memory": "1Gi"
  },
  "requests": {
    "cpu": "500m",
    "memory": "1Gi"
  }
}

You can see from the above outputs that the resources are same as the one we have assigned while deploying the kafka.

We are now ready to apply the KafkaAutoscaler CRO to set up autoscaling for this database.

Compute Resource Autoscaling

Here, we are going to set up compute resource autoscaling using a KafkaAutoscaler Object.

Create KafkaAutoscaler Object

In order to set up compute resource autoscaling for this combined cluster, we have to create a KafkaAutoscaler CRO with our desired configuration. Below is the YAML of the KafkaAutoscaler object that we are going to create,

apiVersion: autoscaling.kubedb.com/v1alpha1
kind: KafkaAutoscaler
metadata:
  name: kf-combined-autoscaler
  namespace: demo
spec:
  databaseRef:
    name: kafka-dev
  opsRequestOptions:
    timeout: 5m
    apply: IfReady
  compute:
    node:
      trigger: "On"
      podLifeTimeThreshold: 5m
      resourceDiffPercentage: 20
      minAllowed:
        cpu: 600m
        memory: 1.5Gi
      maxAllowed:
        cpu: 1
        memory: 2Gi
      controlledResources: ["cpu", "memory"]
      containerControlledValues: "RequestsAndLimits"

Here,

  • spec.databaseRef.name specifies that we are performing compute resource scaling operation on kafka-dev cluster.
  • spec.compute.node.trigger specifies that compute autoscaling is enabled for this cluster.
  • spec.compute.node.podLifeTimeThreshold specifies the minimum lifetime for at least one of the pod to initiate a vertical scaling.
  • spec.compute.node.resourceDiffPercentage specifies the minimum resource difference in percentage. The default is 10%. If the difference between current & recommended resource is less than ResourceDiffPercentage, Autoscaler Operator will ignore the updating.
  • spec.compute.node.minAllowed specifies the minimum allowed resources for the cluster.
  • spec.compute.node.maxAllowed specifies the maximum allowed resources for the cluster.
  • spec.compute.node.controlledResources specifies the resources that are controlled by the autoscaler.
  • spec.compute.node.containerControlledValues specifies which resource values should be controlled. The default is “RequestsAndLimits”.
  • spec.opsRequestOptions contains the options to pass to the created OpsRequest. It has 2 fields.
    • timeout specifies the timeout for the OpsRequest.
    • apply specifies when the OpsRequest should be applied. The default is “IfReady”.

Let’s create the KafkaAutoscaler CR we have shown above,

$ kubectl apply -f https://github.com/kubedb/docs/raw/v2024.9.30/docs/examples/kafka/autoscaler/compute/kafka-combined-autoscaler.yaml
kafkaautoscaler.autoscaling.kubedb.com/kf-combined-autoscaler created

Verify Autoscaling is set up successfully

Let’s check that the kafkaautoscaler resource is created successfully,

$ kubectl describe kafkaautoscaler kf-combined-autoscaler -n demo
Name:         kf-combined-autoscaler
Namespace:    demo
Labels:       <none>
Annotations:  <none>
API Version:  autoscaling.kubedb.com/v1alpha1
Kind:         KafkaAutoscaler
Metadata:
  Creation Timestamp:  2024-08-27T05:55:51Z
  Generation:          1
  Owner References:
    API Version:           kubedb.com/v1
    Block Owner Deletion:  true
    Controller:            true
    Kind:                  Kafka
    Name:                  kafka-dev
    UID:                   a0153c7f-1e1e-4070-a318-c7c1153b810a
  Resource Version:        1104655
  UID:                     817602cc-f851-4fc5-b2c1-1d191462ac56
Spec:
  Compute:
    Node:
      Container Controlled Values:  RequestsAndLimits
      Controlled Resources:
        cpu
        memory
      Max Allowed:
        Cpu:     1
        Memory:  2Gi
      Min Allowed:
        Cpu:                     600m
        Memory:                  1536Mi
      Pod Life Time Threshold:   5m0s
      Resource Diff Percentage:  20
      Trigger:                   On
  Database Ref:
    Name:  kafka-dev
  Ops Request Options:
    Apply:    IfReady
    Timeout:  5m0s
Status:
  Checkpoints:
    Cpu Histogram:
      Bucket Weights:
        Index:              0
        Weight:             4610
        Index:              1
        Weight:             10000
      Reference Timestamp:  2024-08-27T05:55:00Z
      Total Weight:         0.35081120875606336
    First Sample Start:     2024-08-27T05:55:44Z
    Last Sample Start:      2024-08-27T05:56:49Z
    Last Update Time:       2024-08-27T05:57:10Z
    Memory Histogram:
      Reference Timestamp:  2024-08-27T06:00:00Z
    Ref:
      Container Name:     kafka
      Vpa Object Name:    kafka-dev
    Total Samples Count:  3
    Version:              v3
  Conditions:
    Last Transition Time:  2024-08-27T05:56:32Z
    Message:               Successfully created kafkaOpsRequest demo/kfops-kafka-dev-z8d3l5
    Observed Generation:   1
    Reason:                CreateOpsRequest
    Status:                True
    Type:                  CreateOpsRequest
  Vpas:
    Conditions:
      Last Transition Time:  2024-08-27T05:56:10Z
      Status:                True
      Type:                  RecommendationProvided
    Recommendation:
      Container Recommendations:
        Container Name:  kafka
        Lower Bound:
          Cpu:     600m
          Memory:  1536Mi
        Target:
          Cpu:     600m
          Memory:  1536Mi
        Uncapped Target:
          Cpu:     100m
          Memory:  511772986
        Upper Bound:
          Cpu:     1
          Memory:  2Gi
    Vpa Name:      kafka-dev
Events:            <none>

So, the kafkaautoscaler resource is created successfully.

you can see in the Status.VPAs.Recommendation section, that recommendation has been generated for our database. Our autoscaler operator continuously watches the recommendation generated and creates an kafkaopsrequest based on the recommendations, if the database pods resources are needed to scaled up or down.

Let’s watch the kafkaopsrequest in the demo namespace to see if any kafkaopsrequest object is created. After some time you’ll see that a kafkaopsrequest will be created based on the recommendation.

$ watch kubectl get kafkaopsrequest -n demo
Every 2.0s: kubectl get kafkaopsrequest -n demo
NAME                         TYPE              STATUS       AGE
kfops-kafka-dev-z8d3l5       VerticalScaling   Progressing  10s

Let’s wait for the ops request to become successful.

$ kubectl get kafkaopsrequest -n demo
NAME                         TYPE              STATUS       AGE
kfops-kafka-dev-z8d3l5       VerticalScaling   Successful   3m2s

We can see from the above output that the KafkaOpsRequest has succeeded. If we describe the KafkaOpsRequest we will get an overview of the steps that were followed to scale the cluster.

$ kubectl describe kafkaopsrequests -n demo kfops-kafka-dev-z8d3l5 
Name:         kfops-kafka-dev-z8d3l5
Namespace:    demo
Labels:       app.kubernetes.io/component=database
              app.kubernetes.io/instance=kafka-dev
              app.kubernetes.io/managed-by=kubedb.com
              app.kubernetes.io/name=kafkas.kubedb.com
Annotations:  <none>
API Version:  ops.kubedb.com/v1alpha1
Kind:         KafkaOpsRequest
Metadata:
  Creation Timestamp:  2024-08-27T05:56:32Z
  Generation:          1
  Owner References:
    API Version:           autoscaling.kubedb.com/v1alpha1
    Block Owner Deletion:  true
    Controller:            true
    Kind:                  KafkaAutoscaler
    Name:                  kf-combined-autoscaler
    UID:                   817602cc-f851-4fc5-b2c1-1d191462ac56
  Resource Version:        1104871
  UID:                     8b7615c6-d38b-4d5a-b733-6aa93cd41a29
Spec:
  Apply:  IfReady
  Database Ref:
    Name:   kafka-dev
  Timeout:  5m0s
  Type:     VerticalScaling
  Vertical Scaling:
    Node:
      Resources:
        Limits:
          Memory:  1536Mi
        Requests:
          Cpu:     600m
          Memory:  1536Mi
Status:
  Conditions:
    Last Transition Time:  2024-08-27T05:56:32Z
    Message:               Kafka ops-request has started to vertically scaling the kafka nodes
    Observed Generation:   1
    Reason:                VerticalScaling
    Status:                True
    Type:                  VerticalScaling
    Last Transition Time:  2024-08-27T05:56:35Z
    Message:               Successfully updated PetSets Resources
    Observed Generation:   1
    Reason:                UpdatePetSets
    Status:                True
    Type:                  UpdatePetSets
    Last Transition Time:  2024-08-27T05:56:40Z
    Message:               get pod; ConditionStatus:True; PodName:kafka-dev-0
    Observed Generation:   1
    Status:                True
    Type:                  GetPod--kafka-dev-0
    Last Transition Time:  2024-08-27T05:56:40Z
    Message:               evict pod; ConditionStatus:True; PodName:kafka-dev-0
    Observed Generation:   1
    Status:                True
    Type:                  EvictPod--kafka-dev-0
    Last Transition Time:  2024-08-27T05:57:10Z
    Message:               check pod running; ConditionStatus:True; PodName:kafka-dev-0
    Observed Generation:   1
    Status:                True
    Type:                  CheckPodRunning--kafka-dev-0
    Last Transition Time:  2024-08-27T05:57:15Z
    Message:               get pod; ConditionStatus:True; PodName:kafka-dev-1
    Observed Generation:   1
    Status:                True
    Type:                  GetPod--kafka-dev-1
    Last Transition Time:  2024-08-27T05:57:16Z
    Message:               evict pod; ConditionStatus:True; PodName:kafka-dev-1
    Observed Generation:   1
    Status:                True
    Type:                  EvictPod--kafka-dev-1
    Last Transition Time:  2024-08-27T05:57:25Z
    Message:               check pod running; ConditionStatus:True; PodName:kafka-dev-1
    Observed Generation:   1
    Status:                True
    Type:                  CheckPodRunning--kafka-dev-1
    Last Transition Time:  2024-08-27T05:57:30Z
    Message:               Successfully Restarted Pods With Resources
    Observed Generation:   1
    Reason:                RestartPods
    Status:                True
    Type:                  RestartPods
    Last Transition Time:  2024-08-27T05:57:30Z
    Message:               Successfully completed the vertical scaling for kafka
    Observed Generation:   1
    Reason:                Successful
    Status:                True
    Type:                  Successful
  Observed Generation:     1
  Phase:                   Successful
Events:
  Type     Reason                                                         Age    From                         Message
  ----     ------                                                         ----   ----                         -------
  Normal   Starting                                                       4m33s  KubeDB Ops-manager Operator  Start processing for KafkaOpsRequest: demo/kfops-kafka-dev-z8d3l5
  Normal   Starting                                                       4m33s  KubeDB Ops-manager Operator  Pausing Kafka databse: demo/kafka-dev
  Normal   Successful                                                     4m33s  KubeDB Ops-manager Operator  Successfully paused Kafka database: demo/kafka-dev for KafkaOpsRequest: kfops-kafka-dev-z8d3l5
  Normal   UpdatePetSets                                                  4m30s  KubeDB Ops-manager Operator  Successfully updated PetSets Resources
  Warning  get pod; ConditionStatus:True; PodName:kafka-dev-0             4m25s  KubeDB Ops-manager Operator  get pod; ConditionStatus:True; PodName:kafka-dev-0
  Warning  evict pod; ConditionStatus:True; PodName:kafka-dev-0           4m25s  KubeDB Ops-manager Operator  evict pod; ConditionStatus:True; PodName:kafka-dev-0
  Warning  check pod running; ConditionStatus:False; PodName:kafka-dev-0  4m19s  KubeDB Ops-manager Operator  check pod running; ConditionStatus:False; PodName:kafka-dev-0
  Warning  check pod running; ConditionStatus:True; PodName:kafka-dev-0   3m55s  KubeDB Ops-manager Operator  check pod running; ConditionStatus:True; PodName:kafka-dev-0
  Warning  get pod; ConditionStatus:True; PodName:kafka-dev-1             3m50s  KubeDB Ops-manager Operator  get pod; ConditionStatus:True; PodName:kafka-dev-1
  Warning  evict pod; ConditionStatus:True; PodName:kafka-dev-1           3m49s  KubeDB Ops-manager Operator  evict pod; ConditionStatus:True; PodName:kafka-dev-1
  Warning  check pod running; ConditionStatus:False; PodName:kafka-dev-1  3m45s  KubeDB Ops-manager Operator  check pod running; ConditionStatus:False; PodName:kafka-dev-1
  Warning  check pod running; ConditionStatus:True; PodName:kafka-dev-1   3m40s  KubeDB Ops-manager Operator  check pod running; ConditionStatus:True; PodName:kafka-dev-1
  Normal   RestartPods                                                    3m35s  KubeDB Ops-manager Operator  Successfully Restarted Pods With Resources
  Normal   Starting                                                       3m35s  KubeDB Ops-manager Operator  Resuming Kafka database: demo/kafka-dev
  Normal   Successful                                                     3m35s  KubeDB Ops-manager Operator  Successfully resumed Kafka database: demo/kafka-dev for KafkaOpsRequest: kfops-kafka-dev-z8d3l5

Now, we are going to verify from the Pod, and the Kafka yaml whether the resources of the topology database has updated to meet up the desired state, Let’s check,

$ kubectl get pod -n demo kafka-dev-0 -o json | jq '.spec.containers[].resources'
{
  "limits": {
    "memory": "1536Mi"
  },
  "requests": {
    "cpu": "600m",
    "memory": "1536Mi"
  }
}


$ kubectl get kafka -n demo kafka-dev -o json | jq '.spec.podTemplate.spec.containers[].resources'
{
  "limits": {
    "memory": "1536Mi"
  },
  "requests": {
    "cpu": "600m",
    "memory": "1536Mi"
  }
}

The above output verifies that we have successfully auto scaled the resources of the Kafka combined cluster.

Cleaning Up

To clean up the Kubernetes resources created by this tutorial, run:

kubectl delete kafkaopsrequest -n demo kfops-kafka-dev-z8d3l5
kubectl delete kafkaautoscaler -n demo kf-combined-autoscaler
kubectl delete kf -n demo kafka-dev
kubectl delete ns demo

Next Steps