New to KubeDB? Please start here.
Autoscaling the Compute Resource of a FerretDB
This guide will show you how to use KubeDB
to autoscale compute resources i.e. cpu and memory of a FerretDB.
Before You Begin
At first, you need to have a Kubernetes cluster, and the
kubectl
command-line tool must be configured to communicate with your cluster.Install
KubeDB
Provisioner, Ops-manager and Autoscaler operator in your cluster following the steps here.Install
Metrics Server
from hereYou should be familiar with the following
KubeDB
concepts:
To keep everything isolated, we are going to use a separate namespace called demo
throughout this tutorial.
$ kubectl create ns demo
namespace/demo created
Note: YAML files used in this tutorial are stored in docs/examples/ferretdb directory of kubedb/docs repository.
Autoscaling of FerretDB
Here, we are going to deploy a FerretDB
standalone using a supported version by KubeDB
operator. Backend postgres of this FerretDB will be internally managed by KubeDB, or you can use any externally managed postgres but in that case you need to create an appbinding yourself.
Then we are going to apply FerretDBAutoscaler
to set up autoscaling.
Deploy FerretDB
In this section, we are going to deploy a FerretDB with version 1.23.0
Then, in the next section we will set up autoscaling for this ferretdb using FerretDBAutoscaler
CRD. Below is the YAML of the FerretDB
CR that we are going to create,
apiVersion: kubedb.com/v1alpha2
kind: FerretDB
metadata:
name: ferretdb-autoscale
namespace: demo
spec:
version: "1.23.0"
replicas: 1
backend:
externallyManaged: false
podTemplate:
spec:
containers:
- name: ferretdb
resources:
requests:
cpu: "200m"
memory: "300Mi"
limits:
cpu: "200m"
memory: "300Mi"
storage:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 500Mi
deletionPolicy: WipeOut
Let’s create the FerretDB
CRO we have shown above,
$ kubectl create -f https://github.com/kubedb/docs/raw/v2025.1.9/docs/examples/ferretdb/autoscaling/compute/ferretdb-autoscale.yaml
ferretdb.kubedb.com/ferretdb-autoscale created
Now, wait until ferretdb-autoscale
has status Ready
. i.e,
$ kubectl get fr -n demo
NAME NAMESPACE VERSION STATUS AGE
ferretdb-autoscale demo 1.23.0 Ready 6m1s
Let’s check the FerretDB resources,
$ kubectl get ferretdb -n demo ferretdb-autoscale -o json | jq '.spec.podTemplate.spec.containers[0].resources'
{
"limits": {
"cpu": "200m",
"memory": "300Mi"
},
"requests": {
"cpu": "200m",
"memory": "300Mi"
}
}
You can see from the above outputs that the resources are same as the one we have assigned while deploying the ferretdb.
We are now ready to apply the FerretDBAutoscaler
CRO to set up autoscaling for this database.
Compute Resource Autoscaling
Here, we are going to set up compute (cpu and memory) autoscaling using a FerretDBAutoscaler Object.
Create FerretDBAutoscaler Object
In order to set up compute resource autoscaling for this ferretdb, we have to create a FerretDBAutoscaler
CRO with our desired configuration. Below is the YAML of the FerretDBAutoscaler
object that we are going to create,
apiVersion: autoscaling.kubedb.com/v1alpha1
kind: FerretDBAutoscaler
metadata:
name: ferretdb-autoscale-ops
namespace: demo
spec:
databaseRef:
name: ferretdb-autoscale
compute:
ferretdb:
trigger: "On"
podLifeTimeThreshold: 5m
resourceDiffPercentage: 20
minAllowed:
cpu: 400m
memory: 400Mi
maxAllowed:
cpu: 1
memory: 1Gi
controlledResources: ["cpu", "memory"]
containerControlledValues: "RequestsAndLimits"
Here,
spec.databaseRef.name
specifies that we are performing compute resource autoscaling onferretdb-autoscale
.spec.compute.ferretdb.trigger
specifies that compute resource autoscaling is enabled for this ferretdb.spec.compute.ferretdb.podLifeTimeThreshold
specifies the minimum lifetime for at least one of the pod to initiate a vertical scaling.spec.compute.replicaset.resourceDiffPercentage
specifies the minimum resource difference in percentage. The default is 10%. If the difference between current & recommended resource is less than ResourceDiffPercentage, Autoscaler Operator will ignore the updating.spec.compute.ferretdb.minAllowed
specifies the minimum allowed resources for this ferretdb.spec.compute.ferretdb.maxAllowed
specifies the maximum allowed resources for this ferretdb.spec.compute.ferretdb.controlledResources
specifies the resources that are controlled by the autoscaler.spec.compute.ferretdb.containerControlledValues
specifies which resource values should be controlled. The default is “RequestsAndLimits”.spec.opsRequestOptions
contains the options to pass to the created OpsRequest. It has 2 fields. Know more about them here : timeout, apply.
Let’s create the FerretDBAutoscaler
CR we have shown above,
$ kubectl apply -f https://github.com/kubedb/docs/raw/v2025.1.9/docs/examples/ferretdb/autoscaling/compute/autoscaler.yaml
ferretdbautoscaler.autoscaling.kubedb.com/ferretdb-autoscaler-ops created
Verify Autoscaling is set up successfully
Let’s check that the ferretdbautoscaler
resource is created successfully,
$ kubectl get ferretdbautoscaler -n demo
NAME AGE
ferretdb-autoscale-ops 6m55s
$ kubectl describe ferretdbautoscaler ferretdb-autoscale-ops -n demo
Name: ferretdb-autoscale-ops
Namespace: demo
Labels: <none>
Annotations: <none>
API Version: autoscaling.kubedb.com/v1alpha1
Kind: FerretDBAutoscaler
Metadata:
Creation Timestamp: 2024-10-14T08:30:37Z
Generation: 1
Resource Version: 11066
UID: 62387d58-1cd2-4cb6-9d97-91515531fcea
Spec:
Compute:
Ferretdb:
Container Controlled Values: RequestsAndLimits
Controlled Resources:
cpu
memory
Max Allowed:
Cpu: 1
Memory: 1Gi
Min Allowed:
Cpu: 400m
Memory: 400Mi
Pod Life Time Threshold: 5m
Resource Diff Percentage: 20
Trigger: On
Database Ref:
Name: ferretdb-autoscale
Status:
Checkpoints:
Cpu Histogram:
Bucket Weights:
Index: 0
Weight: 10000
Reference Timestamp: 2024-10-14T08:30:00Z
Total Weight: 0.2536082343117003
First Sample Start: 2024-10-14T08:31:16Z
Last Sample Start: 2024-10-14T08:32:08Z
Last Update Time: 2024-10-14T08:32:34Z
Memory Histogram:
Reference Timestamp: 2024-10-14T08:35:00Z
Ref:
Container Name: ferretdb
Vpa Object Name: ferretdb-autoscale
Total Samples Count: 2
Version: v3
Conditions:
Last Transition Time: 2024-10-14T08:32:29Z
Message: Successfully created FerretDBOpsRequest demo/frops-ferretdb-autoscale-5eo9wo
Observed Generation: 1
Reason: CreateOpsRequest
Status: True
Type: CreateOpsRequest
Vpas:
Conditions:
Last Transition Time: 2024-10-14T08:31:34Z
Status: True
Type: RecommendationProvided
Recommendation:
Container Recommendations:
Container Name: ferretdb
Lower Bound:
Cpu: 400m
Memory: 400Mi
Target:
Cpu: 400m
Memory: 400Mi
Uncapped Target:
Cpu: 100m
Memory: 262144k
Upper Bound:
Cpu: 1
Memory: 1Gi
Vpa Name: ferretdb-autoscale
Events: <none>
So, the ferretdbautoscaler
resource is created successfully.
you can see in the Status.VPAs.Recommendation
section, that recommendation has been generated for our ferretdb. Our autoscaler operator continuously watches the recommendation generated and creates an ferretdbopsrequest
based on the recommendations, if the ferretdb pods are needed to scaled up or down.
Let’s watch the ferretdbopsrequest
in the demo namespace to see if any ferretdbopsrequest
object is created. After some time you’ll see that a ferretdbopsrequest
will be created based on the recommendation.
$ watch kubectl get ferretdbopsrequest -n demo
Every 2.0s: kubectl get ferretdbopsrequest -n demo
NAME TYPE STATUS AGE
frops-ferretdb-autoscale-5eo9wo VerticalScaling Progressing 10s
Let’s wait for the ops request to become successful.
$ watch kubectl get ferretdbopsrequest -n demo
Every 2.0s: kubectl get ferretdbopsrequest -n demo
NAME TYPE STATUS AGE
frops-ferretdb-autoscale-5eo9wo VerticalScaling Successful 31s
We can see from the above output that the FerretDBOpsRequest
has succeeded. If we describe the FerretDBOpsRequest
we will get an overview of the steps that were followed to scale the ferretdb.
$ kubectl describe ferretdbopsrequest -n demo frops-ferretdb-autoscale-5eo9wo
Name: frops-ferretdb-autoscale-5eo9wo
Namespace: demo
Labels: app.kubernetes.io/component=database
app.kubernetes.io/instance=ferretdb-autoscale
app.kubernetes.io/managed-by=kubedb.com
app.kubernetes.io/name=ferretdbs.kubedb.com
Annotations: <none>
API Version: ops.kubedb.com/v1alpha1
Kind: FerretDBOpsRequest
Metadata:
Creation Timestamp: 2024-10-14T08:32:29Z
Generation: 1
Owner References:
API Version: autoscaling.kubedb.com/v1alpha1
Block Owner Deletion: true
Controller: true
Kind: FerretDBAutoscaler
Name: ferretdb-autoscale-ops
UID: 62387d58-1cd2-4cb6-9d97-91515531fcea
Resource Version: 11153
UID: f14acbf1-bd46-4b93-9ee7-d944d9f1f8fd
Spec:
Apply: IfReady
Database Ref:
Name: ferretdb-autoscale
Type: VerticalScaling
Vertical Scaling:
Node:
Resources:
Limits:
Cpu: 400m
Memory: 400Mi
Requests:
Cpu: 400m
Memory: 400Mi
Status:
Conditions:
Last Transition Time: 2024-10-14T08:32:29Z
Message: FerretDB ops-request has started to vertically scaling the FerretDB nodes
Observed Generation: 1
Reason: VerticalScaling
Status: True
Type: VerticalScaling
Last Transition Time: 2024-10-14T08:32:32Z
Message: Successfully paused database
Observed Generation: 1
Reason: DatabasePauseSucceeded
Status: True
Type: DatabasePauseSucceeded
Last Transition Time: 2024-10-14T08:32:32Z
Message: Successfully updated PetSets Resources
Observed Generation: 1
Reason: UpdatePetSets
Status: True
Type: UpdatePetSets
Last Transition Time: 2024-10-14T08:32:37Z
Message: get pod; ConditionStatus:True; PodName:ferretdb-autoscale-0
Observed Generation: 1
Status: True
Type: GetPod--ferretdb-autoscale-0
Last Transition Time: 2024-10-14T08:32:37Z
Message: evict pod; ConditionStatus:True; PodName:ferretdb-autoscale-0
Observed Generation: 1
Status: True
Type: EvictPod--ferretdb-autoscale-0
Last Transition Time: 2024-10-14T08:32:42Z
Message: check pod running; ConditionStatus:True; PodName:ferretdb-autoscale-0
Observed Generation: 1
Status: True
Type: CheckPodRunning--ferretdb-autoscale-0
Last Transition Time: 2024-10-14T08:32:47Z
Message: Successfully Restarted Pods With Resources
Observed Generation: 1
Reason: RestartPods
Status: True
Type: RestartPods
Last Transition Time: 2024-10-14T08:32:48Z
Message: Successfully completed the VerticalScaling for FerretDB
Observed Generation: 1
Reason: Successful
Status: True
Type: Successful
Observed Generation: 1
Phase: Successful
Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Normal Starting 3m7s KubeDB Ops-manager Operator Start processing for FerretDBOpsRequest: demo/frops-ferretdb-autoscale-5eo9wo
Normal Starting 3m7s KubeDB Ops-manager Operator Pausing FerretDB database: demo/ferretdb-autoscale
Normal Successful 3m7s KubeDB Ops-manager Operator Successfully paused FerretDB database: demo/ferretdb-autoscale for FerretDBOpsRequest: frops-ferretdb-autoscale-5eo9wo
Normal UpdatePetSets 3m4s KubeDB Ops-manager Operator Successfully updated PetSets Resources
Warning get pod; ConditionStatus:True; PodName:ferretdb-autoscale-0 2m59s KubeDB Ops-manager Operator get pod; ConditionStatus:True; PodName:ferretdb-autoscale-0
Warning evict pod; ConditionStatus:True; PodName:ferretdb-autoscale-0 2m59s KubeDB Ops-manager Operator evict pod; ConditionStatus:True; PodName:ferretdb-autoscale-0
Warning check pod running; ConditionStatus:True; PodName:ferretdb-autoscale-0 2m54s KubeDB Ops-manager Operator check pod running; ConditionStatus:True; PodName:ferretdb-autoscale-0
Normal RestartPods 2m49s KubeDB Ops-manager Operator Successfully Restarted Pods With Resources
Normal Starting 2m49s KubeDB Ops-manager Operator Resuming FerretDB database: demo/ferretdb-autoscale
Normal Successful 2m48s KubeDB Ops-manager Operator Successfully resumed FerretDB database: demo/ferretdb-autoscale for FerretDBOpsRequest: frops-ferretdb-autoscale-5eo9wo
Now, we are going to verify from the Pod, and the FerretDB yaml whether the resources of the ferretdb has updated to meet up the desired state, Let’s check,
$ kubectl get ferretdb -n demo ferretdb-autoscale -o json | jq '.spec.podTemplate.spec.containers[0].resources'
{
"limits": {
"cpu": "400m",
"memory": "400Mi"
},
"requests": {
"cpu": "400m",
"memory": "400Mi"
}
}
The above output verifies that we have successfully auto-scaled the resources of the FerretDB.
Cleaning Up
To clean up the Kubernetes resources created by this tutorial, run:
kubectl delete fr -n demo ferretdb-autoscale
kubectl delete ferretdbautoscaler -n demo ferretdb-autoscale-ops