New to KubeDB? Please start here.

Autoscaling the Compute Resource of an Solr Combined Cluster

This guide will show you how to use KubeDB to autoscale compute resources i.e. cpu and memory of an Solr combined cluster.

Before You Begin

  • At first, you need to have a Kubernetes cluster, and the kubectl command-line tool must be configured to communicate with your cluster.

  • Install KubeDB Community, Enterprise and Autoscaler operator in your cluster following the steps here.

  • Install Metrics Server from here

  • You should be familiar with the following KubeDB concepts:

To keep everything isolated, we are going to use a separate namespace called demo throughout this tutorial.

$ kubectl create ns demo
namespace/demo created

Note: YAML files used in this tutorial are stored in this directory of kubedb/docs repository.

Autoscaling of a Combined Cluster

Here, we are going to deploy an Solr in combined cluster mode using a supported version by KubeDB operator. Then we are going to apply SolrAutoscaler to set up autoscaling.

Deploy Solr Combined

In this section, we are going to deploy an Solr combined cluster with SolrVersion 9.6.1. Then, in the next section, we will set up autoscaling for this database using SolrAutoscaler CRD. Below is the YAML of the Solr CR that we are going to create,

apiVersion: kubedb.com/v1alpha2
kind: Solr
metadata:
  name: solr-combined
  namespace: demo
spec:
  version: 9.6.1
  replicas: 2
  zookeeperRef:
    name: zoo
    namespace: demo
  storage:
    accessModes:
      - ReadWriteOnce
    resources:
      requests:
        storage: 1Gi

Let’s create the Solr CRO we have shown above,

$ kubectl create -f https://github.com/kubedb/docs/raw/v2025.1.9/docs/examples/solr/autoscalers/combined.yaml
solr.kubedb.com/solr-combined created

Now, wait until es-combined has status Ready. i.e,

$ kubectl get sl -n demo
NAME            TYPE                  VERSION   STATUS   AGE
solr-combined   kubedb.com/v1alpha2   9.6.1     Ready    83s

Let’s check the Pod containers resources,

$ kubectl get pod -n demo solr-combined-0 -o json | jq '.spec.containers[].resources'
{
  "limits": {
    "memory": "2Gi"
  },
  "requests": {
    "cpu": "900m",
    "memory": "2Gi"
  }
}

Let’s check the Solr resources,

$ kubectl get solr -n demo solr-combined -o json | jq '.spec.podTemplate.spec.containers[] | select(.name == "solr") | .resources'
{
  "limits": {
    "memory": "2Gi"
  },
  "requests": {
    "cpu": "900m",
    "memory": "2Gi"
  }
}

You can see from the above outputs that the resources are the same as the ones we have assigned while deploying the Solr.

We are now ready to apply the SolrAutoscaler CRO to set up autoscaling for this database.

Compute Resource Autoscaling

Here, we are going to set up compute (ie. cpu and memory) autoscaling using an SolrAutoscaler Object.

Create SolrAutoscaler Object

To set up compute resource autoscaling for this combined cluster, we have to create a SolrAutoscaler CRO with our desired configuration. Below is the YAML of the SolrAutoscaler object that we are going to create,

apiVersion: autoscaling.kubedb.com/v1alpha1
kind: SolrAutoscaler
metadata:
  name: sl-node-autoscaler
  namespace: demo
spec:
  databaseRef:
    name: solr-combined
  opsRequestOptions:
    timeout: 5m
    apply: IfReady
  compute:
    node:
      trigger: "On"
      podLifeTimeThreshold: 5m
      resourceDiffPercentage: 5
      minAllowed:
        cpu: 1
        memory: 2Gi
      maxAllowed:
        cpu: 2
        memory: 3Gi
      controlledResources: ["cpu", "memory"]
      containerControlledValues: "RequestsAndLimits"

Here,

  • spec.databaseRef.name specifies that we are performing compute resource autoscaling on solr-combined database.
  • spec.compute.node.trigger specifies that compute resource autoscaling is enabled for this cluster.
  • spec.compute.node.podLifeTimeThreshold specifies the minimum lifetime for at least one of the pod to initiate a vertical scaling.
  • spec.compute.node.minAllowed specifies the minimum allowed resources for the Solr node.
  • spec.compute.node.maxAllowed specifies the maximum allowed resources for the Solr node.
  • spec.compute.node.controlledResources specifies the resources that are controlled by the autoscaler.
  • spec.compute.node.resourceDiffPercentage specifies the minimum resource difference in percentage. The default is 10%. If the difference between current & recommended resource is less than ResourceDiffPercentage, Autoscaler Operator will ignore the updating.
  • spec.compute.node.containerControlledValues specifies which resource values should be controlled. The default is “RequestsAndLimits”.
    • spec.opsRequestOptions contains the options to pass to the created OpsRequest. It has 2 fields. Know more about them here : timeout, apply.

Let’s create the SolrAutoscaler CR we have shown above,

$ kubectl apply -f https://github.com/kubedb/docs/raw/v2025.1.9/docs/examples/solr/autoscaler/compute/combined-scaler.yaml
solrautoscaler.autoscaling.kubedb.com/sl-node-autoscaler created

Verify Autoscaling is set up successfully

Let’s check that the Solrautoscaler resource is created successfully,

$ kubectl get solrautoscaler -n demo
NAME                 AGE
sl-node-autoscaler   100s

$ kubectl describe solrautoscaler -n demo sl-node-autoscaler
Name:         sl-node-autoscaler
Namespace:    demo
Labels:       <none>
Annotations:  <none>
API Version:  autoscaling.kubedb.com/v1alpha1
Kind:         SolrAutoscaler
Metadata:
  Creation Timestamp:  2024-10-29T12:29:57Z
  Generation:          1
  Owner References:
    API Version:           kubedb.com/v1alpha2
    Block Owner Deletion:  true
    Controller:            true
    Kind:                  Solr
    Name:                  solr-combined
    UID:                   422bb16e-2181-4ce3-9401-a4feef853b4e
  Resource Version:        883971
  UID:                     33bf5f3b-c6ad-4234-8119-fccebcb8d4b6
Spec:
  Compute:
    Node:
      Container Controlled Values:  RequestsAndLimits
      Controlled Resources:
        cpu
        memory
      Max Allowed:
        Cpu:     2
        Memory:  3Gi
      Min Allowed:
        Cpu:                     1
        Memory:                  2Gi
      Pod Life Time Threshold:   5m
      Resource Diff Percentage:  5
      Trigger:                   On
  Database Ref:
    Name:  solr-combined
  Ops Request Options:
    Apply:    IfReady
    Timeout:  5m
Status:
  Checkpoints:
    Cpu Histogram:
      Bucket Weights:
        Index:              0
        Weight:             7649
        Index:              1
        Weight:             7457
        Index:              3
        Weight:             10000
        Index:              4
        Weight:             9817
      Reference Timestamp:  2024-10-29T12:30:00Z
      Total Weight:         0.44924508934014207
    First Sample Start:     2024-10-29T12:29:42Z
    Last Sample Start:      2024-10-29T12:31:49Z
    Last Update Time:       2024-10-29T12:32:05Z
    Memory Histogram:
      Reference Timestamp:  2024-10-29T12:35:00Z
    Ref:
      Container Name:     solr
      Vpa Object Name:    solr-combined
    Total Samples Count:  4
    Version:              v3
  Conditions:
    Last Transition Time:  2024-10-29T12:30:35Z
    Message:               Successfully created solrOpsRequest demo/slops-solr-combined-04xbzd
    Observed Generation:   1
    Reason:                CreateOpsRequest
    Status:                True
    Type:                  CreateOpsRequest
  Vpas:
    Conditions:
      Last Transition Time:  2024-10-29T12:30:05Z
      Status:                True
      Type:                  RecommendationProvided
    Recommendation:
      Container Recommendations:
        Container Name:  solr
        Lower Bound:
          Cpu:     1
          Memory:  2Gi
        Target:
          Cpu:     1
          Memory:  2Gi
        Uncapped Target:
          Cpu:     100m
          Memory:  1555165137
        Upper Bound:
          Cpu:     2
          Memory:  3Gi
    Vpa Name:      solr-combined
Events:            <none>

So, the Solrautoscaler resource is created successfully.

you can see in the Status.VPAs.Recommendation section, that recommendation has been generated for our database. Our autoscaler operator continuously watches the recommendation generated and creates an solropsrequest based on the recommendations, if the database pods are needed to scaled up or down.

Let’s watch the solropsrequest in the demo namespace to see if any solropsrequest object is created. After some time you’ll see that an Solropsrequest will be created based on the recommendation.

$ kubectl get slops -n demo
NAME                         TYPE              STATUS        AGE
slops-solr-combined-04xbzd   VerticalScaling   Progressing   2m24s

Let’s wait for the opsRequest to become successful.

$ kubectl get slops -n demo
NAME                         TYPE              STATUS       AGE
slops-solr-combined-04xbzd   VerticalScaling   Successful   2m24s

We can see from the above output that the SolrOpsRequest has succeeded. If we describe the SolrOpsRequest we will get an overview of the steps that were followed to scale the database.

$ kubectl describe slops -n demo slops-solr-combined-04xbzd
Name:         slops-solr-combined-04xbzd
Namespace:    demo
Labels:       app.kubernetes.io/component=database
              app.kubernetes.io/instance=solr-combined
              app.kubernetes.io/managed-by=kubedb.com
              app.kubernetes.io/name=solrs.kubedb.com
Annotations:  <none>
API Version:  ops.kubedb.com/v1alpha1
Kind:         SolrOpsRequest
Metadata:
  Creation Timestamp:  2024-10-29T12:30:35Z
  Generation:          1
  Owner References:
    API Version:           autoscaling.kubedb.com/v1alpha1
    Block Owner Deletion:  true
    Controller:            true
    Kind:                  SolrAutoscaler
    Name:                  sl-node-autoscaler
    UID:                   33bf5f3b-c6ad-4234-8119-fccebcb8d4b6
  Resource Version:        883905
  UID:                     709d9b24-cd19-4605-bb41-92d099758ec0
Spec:
  Apply:  IfReady
  Database Ref:
    Name:   solr-combined
  Timeout:  5m0s
  Type:     VerticalScaling
  Vertical Scaling:
    Node:
      Resources:
        Limits:
          Memory:  2Gi
        Requests:
          Cpu:     1
          Memory:  2Gi
Status:
  Conditions:
    Last Transition Time:  2024-10-29T12:30:35Z
    Message:               Solr ops-request has started to vertically scaling the Solr nodes
    Observed Generation:   1
    Reason:                VerticalScaling
    Status:                True
    Type:                  VerticalScaling
    Last Transition Time:  2024-10-29T12:30:38Z
    Message:               Successfully updated PetSets Resources
    Observed Generation:   1
    Reason:                UpdatePetSets
    Status:                True
    Type:                  UpdatePetSets
    Last Transition Time:  2024-10-29T12:31:23Z
    Message:               Successfully Restarted Pods With Resources
    Observed Generation:   1
    Reason:                RestartPods
    Status:                True
    Type:                  RestartPods
    Last Transition Time:  2024-10-29T12:30:43Z
    Message:               get pod; ConditionStatus:True; PodName:solr-combined-0
    Observed Generation:   1
    Status:                True
    Type:                  GetPod--solr-combined-0
    Last Transition Time:  2024-10-29T12:30:43Z
    Message:               evict pod; ConditionStatus:True; PodName:solr-combined-0
    Observed Generation:   1
    Status:                True
    Type:                  EvictPod--solr-combined-0
    Last Transition Time:  2024-10-29T12:30:48Z
    Message:               running pod; ConditionStatus:False
    Observed Generation:   1
    Status:                False
    Type:                  RunningPod
    Last Transition Time:  2024-10-29T12:31:03Z
    Message:               get pod; ConditionStatus:True; PodName:solr-combined-1
    Observed Generation:   1
    Status:                True
    Type:                  GetPod--solr-combined-1
    Last Transition Time:  2024-10-29T12:31:03Z
    Message:               evict pod; ConditionStatus:True; PodName:solr-combined-1
    Observed Generation:   1
    Status:                True
    Type:                  EvictPod--solr-combined-1
    Last Transition Time:  2024-10-29T12:31:23Z
    Message:               Successfully completed the vertical scaling for RabbitMQ
    Observed Generation:   1
    Reason:                Successful
    Status:                True
    Type:                  Successful
  Observed Generation:     1
  Phase:                   Successful
Events:
  Type     Reason                                                    Age    From                         Message
  ----     ------                                                    ----   ----                         -------
  Normal   Starting                                                  3m35s  KubeDB Ops-manager Operator  Start processing for SolrOpsRequest: demo/slops-solr-combined-04xbzd
  Normal   Starting                                                  3m35s  KubeDB Ops-manager Operator  Pausing Solr databse: demo/solr-combined
  Normal   Successful                                                3m35s  KubeDB Ops-manager Operator  Successfully paused Solr database: demo/solr-combined for SolrOpsRequest: slops-solr-combined-04xbzd
  Normal   UpdatePetSets                                             3m32s  KubeDB Ops-manager Operator  Successfully updated PetSets Resources
  Warning  get pod; ConditionStatus:True; PodName:solr-combined-0    3m27s  KubeDB Ops-manager Operator  get pod; ConditionStatus:True; PodName:solr-combined-0
  Warning  evict pod; ConditionStatus:True; PodName:solr-combined-0  3m27s  KubeDB Ops-manager Operator  evict pod; ConditionStatus:True; PodName:solr-combined-0
  Warning  running pod; ConditionStatus:False                        3m22s  KubeDB Ops-manager Operator  running pod; ConditionStatus:False
  Warning  get pod; ConditionStatus:True; PodName:solr-combined-1    3m7s   KubeDB Ops-manager Operator  get pod; ConditionStatus:True; PodName:solr-combined-1
  Warning  evict pod; ConditionStatus:True; PodName:solr-combined-1  3m7s   KubeDB Ops-manager Operator  evict pod; ConditionStatus:True; PodName:solr-combined-1
  Normal   RestartPods                                               2m47s  KubeDB Ops-manager Operator  Successfully Restarted Pods With Resources
  Normal   Starting                                                  2m47s  KubeDB Ops-manager Operator  Resuming Solr database: demo/solr-combined
  Normal   Successful                                                2m47s  KubeDB Ops-manager Operator  Successfully resumed Solr database: demo/solr-combined for SolrOpsRequest: slops-solr-combined-04xbzd

Now, we are going to verify from the Pod, and the Solr YAML whether the resources of the standalone database has updated to meet up the desired state, Let’s check,

$ kubectl get pod -n demo solr-combined-0 -o json | jq '.spec.containers[].resources'
{
  "limits": {
    "memory": "2Gi"
  },
  "requests": {
    "cpu": "1",
    "memory": "2Gi"
  }
}

$ kubectl get solr -n demo solr-combined -o json | jq '.spec.podTemplate.spec.containers[] | select(.name == "solr") | .resources'
{
  "limits": {
    "memory": "2Gi"
  },
  "requests": {
    "cpu": "1",
    "memory": "2Gi"
  }
}

The above output verifies that we have successfully auto-scaled the resources of the Solr standalone database.

Cleaning Up

To clean up the Kubernetes resources created by this tutorial, run:

$ kubectl delete sl -n demo solr-combined 
$ kubectl delete solrautoscaler -n demo sl-node-autoscaler
$ kubectl delete ns demo